
Exercises

Professor Leon Tabak

30 May 2022

This work is licensed under CC BY 4.0. To view a copy of this license, visit
http://creativecommons.org/licenses/by/4.0/.

Complexity

We want to compare algorithms. We want some measure that will allow us to
select the “best” algorithm with which to solve some problem.

One measure counts the operations that the computer executes. We will call
this measure the complexity of the algorithm. We will use a notation called
“Big-Oh” to denote the complexity.

For example, we might want to know how much work the computer has to do
to find the smallest value in a list of integers when we use the sequential search
algorithm. Of course, the amount of work depends upon the length of the list.

For that reason, instead of looking for one number we will search for a relation-
ship between the size of the input (in this case, how many numbers are in the
list) and the number of operations executed.

We might choose not to count all instructions that the computer executes, not
only the most significant instructions. In our analysis of searching and sorting
algorithms, we are most interested in operations that compare one value to
another. We want to know how many times the computer touches each element
of the list that we are sorting or through which we are searching.

1

http://creativecommons.org/licenses/by/4.0/

In the following table, N means the length of the list. The second column
contains “Big-Oh” notation.

algorithm complexity
sequential search O(N)

binary search O(logN)
selection sort O(N2)
insertion sort O(N2)

merge sort O(N logN)

The selection and insertion sorting algorithms are both O(N2) algorithms. This
means that, for sufficiently large values of N , the number of operations required
to sort a list is no greater than some fixed multiple of N2.

Let’s put aside the part of the definition that says “for sufficiently large values
of N . Let’s also suppose that the constant of proportionality is one.

Then we can say this in different way: the time required to sort a list using either
of these two algorithms is roughly proportional to the square of the length of
the list.

• Doubling the length of the list increases the time required to sort by list
by a factor of four.

• Multiplying the length of the list by ten increases the time required to
sort by a factor of one hundred.

Look at the expressions in the table:

• A graph of O(N) is a straight line. The line rises at a constant rate.

• A graph of O(N2) is a parabolic arc. The curve climbs upward at an ever
steeper rate.

You are familiar with linear and quadratic functions. You have seen logarithms
before, but might be less sure logarithms of how they work and what they mean
in an analysis of complexity..

Let’s review.

Properties of logarithms

Let log2 x be the logarithm base 2 of x.

The logarithm of a number is the power to which we must raise the base to
produce that number:

2

• log2 1 = 0 because 1 = 20

• log2 2 = 1 because 2 = 21

• log2 4 = 2 because 4 = 22.

What are the values of the logarithms base 2 of the next few powers of 2?

• log2 8 =?

• log2 16 =?

• log2 32 =?

The domain of a function f(x) is the set of values of x for which the function
is defined.

• For which values of x can we compute log2 x?

Logarithms allow us to substitute addition for multiplication.

log2 21 = log2 2 = 1

log2 22 = log2 4 = 2

21 · 22 = 2 · 2 · 2 = 21+2 = 23

log2(21 · 22) = log2 23 = log2 2 + log2 4 = 3

In general, log2(a · b) = log2 a + log2 b.

• Who invented (or, if you prefer, discovered) logarithms? When?

Find the answer online.

• Search on the Internet for an explanation of how slide rules work.

Look what happens when we apply this rule repeatedly:

log2(a · a) = log2 a + log2 a = 2 log2 a

log2(a · a · a) = log2 a + log2 a + log2 a = 3 log2 a

...
...

log2 a
n = n log2 a

Use these properties of logarithms to compute more values:

3

• log2 64 = log2(8 · 8) =?

• The logarithm base 2 of 16 is 4.

What is the logarithm base 2 of (16 · 16) = 256?

• log2 32 = 5 and 32 · 32 = 1024.

What is the value of log2 1024?

• 1024 · 1024 ≈ 1, 000, 000

What is the approximate value of log2(1, 000, 000)?

We can define logarithms with bases other than 2:

log10 1 = log10 100 = 0

log10 10 = log10 101 = 1

log10 100 = log10 102 = 2

log10 1000 = log10 103 = 3

Your calculator probably does not have a key for computing logarithms base 2.
It might have a key for computing logarithms base 10.

Here’s how we can compute the value of log2(x) given the value of log10(x).

10x = a

log10 a = x

2y = a

log2 a = y

10z = 2

log2 10 = z

(10z)y = 2y

= a

log10 a = z · y
= log10 2 · log2 a

log2 a = log10 a/log102

4

When we characterize the complexity of the binary search algorithm with the
expression O(logN), we mean that the computer executes a number of instruc-
tions that is no more than some multiple of logN . Changing the base of the
logarithms changes that multiple. However, with any base the amount of work
remains proportional to the logarithm of the length of the list.

In this sense, the base of the logarithms does not matter in the characterization
of an algorithm’s complexity.

However, logarithms base 2 will arise naturally in our study of how these algo-
rithms work.

The binary search and merge sort algorithms repeatedly divide a list in half.
The logarithm of the list’s length tells us how many times we can divide by two
before we get down to one.

Before, we found the value of log2 32 by counting multiplications:

32 = 1 · 2 · 2 · 2 · 2 · 2

There are five twos in the product and so log2 32 = 5.

We can go in the opposite direction. If we count divisions, we also get 5.

32/2 = 16

16/2 = 8

8/2 = 4

4/2 = 2

2/1 = 1

• Approximate the values of N2 and N log2 N for N = 1000 and N =
1, 000, 000.

How much advantage do we get by choosing a O(N logN) algorithm rather
than a O(N2) algorithm?

• log x grows much more slowly than x. The derivative of a function f(x)
tells us how quickly f(x) increases as we increase x.

Find the derivative of the natural logarithm. (That’s the logarithm whose
base is e.)
d
dx log x =?

• There are problems for which the best known solutions have an exponential
time complexity: O(ex).

What is the relationship between the exponential function and the loga-
rithm function?

5

Program 0

#include <s t d i o . h>
#include <s t d l i b . h>

// TO−DO: What does f () do?
// Give t h i s f unc t i on a s e n s i b l e name .
int f (int data [] , int l ength , int s t a r t) {

int bestGuessSoFar = s t a r t ;

for (int i = s t a r t + 1 ; i < l ength ; i++) {
i f (data [i] < data [bestGuessSoFar]) {

bestGuessSoFar = i ;
} // i f

} // f o r

return bestGuessSoFar ;
} // f (i n t [] , in t , i n t)

// TO−DO: What does g () do?
// Give t h i s f unc t i on a s e n s i b l e name .
void g (int data [] , int i , int j) {

int temp = data [i] ;
data [i] = data [j] ;
data [j] = temp ;

} // g (i n t [] , in t , i n t)

int main (int argc , char∗∗ argv) {

// l en g t h o f the data array
int l ength = 8 ;

// the data array
// the f i r s t 4 e lements are the 4 sma l l e s t
// va l u e s in the array
// the f i r s t 4 e lements are in order
int data [] = { 2 , 5 , 7 , 13 , 31 , 23 , 17 , 29 } ;

// p r i n t array b e f o r e c a l l i n g f () and g ()
p r i n t f (”\n\n data = {”) ;
for (int i = 0 ; i < l ength ; i++) {

p r i n t f (”%4d” , data [i]) ;
} // f o r
p r i n t f (” }\n\n”) ;

6

// index o f the f i r s t e lement in the unsorted
// par t o f the data array
int s t a r t = 4 ;

int index = f (data , length , s t a r t) ;

// f0 () re turns an index o f an element in data
// p r i n t the index o f t h a t e lement
p r i n t f (” index = %2d\n” , index) ;

// p r i n t the va lue o f the element at t h a t index
p r i n t f (” data [%2d] = %2d\n” , index , data [index]) ;

g (data , s t a r t , index) ;

// p r i n t array a f t e r c a l l i n g f () and g ()
// TO−DO: The code t ha t f o l l ow s i s repea ted code .
// I t would be b e t t e r to d e f i n e a func t i on once
// and c a l l i t tw ice ra the r than wr i t e the
// same code tw ice .
//
// Can you de f i n e a func t i on t ha t p r i n t s the
// con ten t s o f an array o f i n t e g e r s ?
p r i n t f (”\n\n data = {”) ;
for (int i = 0 ; i < l ength ; i++) {

p r i n t f (”%4d” , data [i]) ;
} // f o r
p r i n t f (” }\n\n”) ;

// TO−DO: This program shows one s t ep in a s o r t i n g
// a l gor i thm . Which s o r t i n g a l gor i thm ?

// TO−DO: Change the va l u e s o f l eng th , data , and s t a r t .
// ∗ The va lue o f l e n g t h must equa l the s i z e o f the data array
// ∗ The f i r s t n e lements in data must be in order and
// must be the sma l l e s t n e lements in data . .
// ∗ The va lue o f s t a r t must equa l n .
// Run the program again . Do you see what you expec ted to see ?

} // main(int , char ∗∗)

Output of Program 0

data = { 2 5 7 13 31 23 17 29 }

7

index = 6
data [6] = 17

data = { 2 5 7 13 17 23 31 29 }

Program 1

#include <s t d i o . h>
#include <s t d l i b . h>

// TO−DO:
// ∗ Run t h i s program .
// ∗ Study the func t i on f () .
// ∗ Give the func t i on f () a s e n s i b l e name .

// the f i r s t k e lements o f data are in order
//
// the f i r s t k e lements o f data need not be
// the sma l l e s t k e lements in data
void f (int data [] , int k) {

// TO−DO:
// ∗ What i s the g r e a t e s t number o f t imes t ha t
// the body o f the loop w i l l be executed ?
// ∗ What i s the l e a s t number o f t imes t ha t
// the body o f the loop w i l l be executed ?
while (k > 0 && data [k] < data [k − 1]) {

// TO−DO: Define a func t i on t ha t does
// what t h e s e next 3 l i n e s o f code do .
// Replace t h e s e 3 l i n e s o f code wi th
// a c a l l to the new func t i on .
int temp = data [k] ;
data [k] = data [k − 1] ;
data [k − 1] = temp ;

k−−;
} // wh i l e

} // f (i n t [] , i n t)

int main (int argc , char∗∗ argv) {

// number o f e lements in array

8

int l ength = 8 ;

// p a r t l y so r t ed array o f i n t e g e r s
int data [] = {2 , 3 , 5 , 11 , 13 , 7 , 19 , 17 } ;

// f i r s t 5 e lements o f data are a l r eady in order
int l engthOfSortedPartOfLi s t = 5 ;

// look at data b e f o r e c a l l i n g f ()
p r i n t f (”\n\n data = { ”) ;
for (int i = 0 ; i < l ength ; i++) {

p r i n t f (”%4d” , data [i]) ;
} // f o r
p r i n t f (” }\n\n”) ;

f (data , l engthOfSortedPartOfLi s t) ;

// Look at data a f t e r c a l l i n g f () .
p r i n t f (”\n\n data = { ”) ;
for (int i = 0 ; i < l ength ; i++) {

p r i n t f (”%4d” , data [i]) ;
} // f o r
p r i n t f (” }\n\n”) ;

// TO−DO:
// ∗ Increment the va lue o f l eng thOfSor t edPar tOfL i s t .
// ∗ Ca l l f () a second time .
// ∗ Look at the data a f t e r c a l l i n g f () the second time .
// ∗ What do you see ?

// TO−DO: The func t i on f () d e s c r i b e s one s t ep in
// which s o r t i n g a l gor i thm ?

} // main(int , char ∗∗)

Output of Program 1

data = { 2 3 5 11 13 7 19 17 }

data = { 2 3 5 7 11 13 19 17 }

9

