Exercises, Handouts, and Notes

(CSC144 Object-Oriented Programming

15 December

This work is licensed under CC BY 4.0. To view a copy of this license, visit
http://creativecommons.org/licenses,/by/4.0/.

Contents

1 November 15 (a.m.)
1.1 The Java Programming Language e e e
L1 Origins . . . o o o o e
1.1.2 Distinguishing features L e
1.1.3 The future of Javao
1.1.4 Udacity course i e e e e e e e e
1.1.5 Oracle: The Java Tutorials
1.1.6 Object-Oriented programming o vttt v i e
1.1.7 Downloads e e e

2 November 16: Exercise
3 November 16
4 November 17: Assignment for Week 0

5 November 17 (a.m.)

5.1 Structure of a Java programming L. Lo e e

6 November 17 (p.m.)

http://creativecommons.org/licenses/by/4.0/

7 November 18 (a.m.)
7.1 Definition of “variable”

7.2 Primitive and reference types Lo
8 November 18 (p.m.)
9 November 18: Guidelines for writing

10 November 18: Understanding and comparing sorting algorithms
10.1 Measuring computational complexityo
10.2 “Big-Oh” . . o o
10.3 Complexity of sorting algorithms

11 November 19 (a.m.)
11.1 Sequential Search L e
11.2 Selection Sort oo e e e
11.3 Inmsertion Sort L e e
11.4 There are searches inside both sorts! L

11.5 Merge SOrt . . . o o ot e e e e
12 November 29: A class as a blueprint
13 November 29: Parts of a class
14 November 29: Learning how to use Git and GitHub
15 November 30: A class that models vectors
16 December 1: The start of the definition of the Vector class
17 December 2
18 December 2: How to push local files to a GitHub repository
19 December 2: IBM Watson: Final Jeopardy! and the Future of Watson
20 December 2: Turing Award winners
21 December 3: Modeling a fraction

22 December 3: Cats Cradle program
22.1 CatsCradlejava o o o o e e e
22.2 CatsCradlePanel.java L 0 0 e
22.3 Vector2D.javao e e e e e e e

12
12
13

13

14

15
15
15
15

15
15
16
16
16
16

17

18

19

20

21

23

24

25

25

25

23 December 6: Work flow

24 December 6: How to describe a curve
24.0.1 Line e
24.0.2 Explicit formulationo e
24.0.3 Implicate formulation L e
24.0.4 Parametric formulation
24.1 Other parametric CUTVES o v it st e e e e e e
24.1.1 Circle o e e
24.1.2 EIpSe . . . o o o e e e e e e e
24.1.3 Lissajous figure e e e e
24.2 Where to look for other formulae

25 December 6: Where to learn more

25.1 GitHub tutorials o
26 December 6: How to get started on paper

27 December 6: Fractal program
27.1 FractalSet.java L e e e e
27.2 FractalSetPanel.java L e
27.3 Complex.javao e e e e e e

28 December 7:

29 December 7: 2 meanings of ‘“class” in Java

30 December 7: Scope and lifetime of variables

31 December 7: Instance variables, parameters, and local variables

32 December 8: Review of version control
32.1 BasiCs e e
32.2 Learning how to use version control L L Lo

32.3 Version control commands

33 December 8: Mapping points

33.1 Rectangles in two coordinate systems L. Lo e
34 December 9: Data classes
35 December 9: Rays of the sun or spokes of a wheel

36 December 10: Inheritance and polymorphism

36

37
37
37
37
37
37
37
38
38
38

38
38

38

38
38
39
42

43

46

47

48

48
48
49
49

49
49

50

51

51

36.1 Exercise

37 December 13:

37.1 Respond to the following questions here on Piazza

38 December 13:

39 December 13:

40 December 14:

41 December 15:

3 short videos

Writing with the English and Java languages

Programming exercise

Exercise

Review

53
93

53

54

55

59

1 November 15 (a.m.)

1.1 The Java Programming Language

1.1.1 Origins

e Sun Microsystems Corporation (now a part of the Oracle Corporation)
e James Gosling

e May 1995

1.1.2 Distinguishing features

e object-oriented

a hybrid language

— compiled and interpreted
— Java bytecodes

— “write once, run anywhere”

did not become the language of the Web

did become a very popular language

large, standardized API
e well-suited for many kinds of applications

— desktop
— mobile

— Web

— embedded

— enterprise

1.1.3 The future of Java

e Java continues to evolve

e computer scientists have created new languages that are compatible with Java, but better

1.1.4 Udacity course

Java Programming Basics

https://www.udacity.com/course/java-programming-basics--ud282

0O Ui Wi

DO DD = = e e e s e
O O© 00O Ul W~ OO

1.1.5 Oracle: The Java Tutorials

The Java Tutorials

1.1.6 Object-Oriented programming

e procedural languages like FORTRAN beginning in mid-1950s

e structured programming with languages like Pascal and C in 1970s

e abstract data type languages like Ada in 1980s

e object-oriented languages like C++ (1980s) and Java (1990s)

e a package is a collection of related classes

e a class is a blueprint for the creation of objects

e an object is a bundle of related data and methods for working with that data
e we will also use class to mean a bundle of related methods (without any data)
e one class can be related to another class

— through inheritance: ‘class A extends B‘ means that A is a kind of B

— through aggregation (also called composition: a class that models a triangle might contain 3 instances
of a class that models points.

1.1.7 Downloads

2

e Netbeans

e Java JDK

November 16: Exercise

IS
*

* % % X %X %X %X %X X X X ¥ ¥ ¥ % %X %X % % %

Statistics.java

CSC144 Object—Oriented Programming
Leon Tabak

16 November 2021

This is an example created for the purpose
of introducing students to the Java
programming language .

TO-DO: Create your own working copy of this
program . Work with a partner. Replace the name
of the program’s author with your own name.

TO-DO: Take notes during our discussion of
this program.
— Identify reserved words of the the Java language.
— Look for rules and conventions.
— Learn the distinction between rules and conventions.
— We will point to some idioms.
— Where could you make changes to the code without

https://docs.oracle.com/javase/tutorial/
https://netbeans.apache.org/download/nb124/nb124.html
https://www.oracle.com/java/technologies/downloads/

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
o4
95
56
57
58
99
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7

* changing the program’s functionality .
*
*/
package statistics;

import java.util.ArrayList;
import java.util.List;
import java.util.Random;

public class Statistics {

public static List<Integer> makeList(int size, Random rng) {
List<Integer> list = new ArrayList <>();

for(int 1 = 0; i < size; i++) {
int n = 10 + rng.nextInt (90);
list .add(n);

Y /) for

return list;
Y // makeList(int)

public static void printList(List<Integer> list) {
for(int n : list) {
System.out.println(n);

y /) for
Y // printList(List<Integer>)

public static int numberOfOdds(List<Integer> list) {
int count = 0;

for(int n : list) {
if(n%2=1) {
count+-+;
y /) if
y /) for

return count;
} // numberOfOdds(List<Integer>)

// TO-DO: Write a method that returns to its
// caller the number of even integers in a
// list of integers.

// TO-DO: Write a method that returns to its
// caller the number of integers in a list
// of integers that are divisible by 3.

public static void main(String [] args) {
// Create a random number generator.
Random rng = new Random ();

// Create a list of 12 random numbers,
// each a two digit positive integer.

78
79
80
81
82
83
84
85
86
87
88

List<Integer> data = makeList(12, rng);

// Print the list of random numbers.
printList (data);

// Print the number of odd numbers in the list.
System.out.println("# of odd numbers = 7 +
numberOfOdds (data));

Y // main(String[])

Y // Statistics

3

November 16

Browse on one or more of the websites that I have listed under the Resources tab and in the General Resources
section of this Piazza site.

Look for. ..

e people with interesting backgrounds

e people with interesting responsibilities

e interesting aspects of the organization’s philosophy, values, or ways of working

Share what you learn in a paragraph or two on this Piazza site.

4

November 17: Assignment for Week 0

Programming Exercise

1.
2.

Write a method that returns to its caller the value of the smallest integer in a list of integers.

Write a method that returns to its caller the position (that is, the index) of the smallest integer in a list of
integers.

Write a method that returns to its caller the position of the smallest integer in that part of a list of integers
that begins at a specified index.

Write a method that exchanges the values at two positions in a list of integers.
Write a method that sorts a list of integers using the selection sort algorithm.

Write a method whose parameters are an integer m and a list of n integers whose first m integers are in
ascending order.

0<m<n

The method will move the (m+1)*" integer to the left until the first (m+1) integers in the list are in ascending
order.

Write a method whose parameters are a sorted list of m integers and a sorted list of n integers.. The integers
in both lists will be in ascending order.

The method will create and return to its caller a list that contains all of the integers in the two lists it was
given, in ascending order.

Reading and Writing Exercise

Read more on the websites of the companies that you will find listed on our course’s Piazza site in the General
Resources section under the Resources tab.

1.

5.1

Write 256 words about one of the organizations. Tell your readers something about the firm’s mission, values,
and/or its offices and the environment in which its employees work.

What distinguishes this company? Do you see evidence of leadership? Innovation? Caring and support for
employees?

Whet your readers’ appetites. Give them reasons to want to learn more about the organization.
Inform and persuade.

Post your note in the Week-0 folder on Piazza.

. Write 256 words about people at one of these organizations. Choose two or three or four people whose

responsibilities, skills, interests, and experiences make them especially intriguing to you.

Choose examples that will give your readers a good picture of the kind of people that work in the firm.
Give your readers reasons to think: “These are the kinds of people with whom we should be working.”
Inform and persuade.

Post your note in the Week-0 folder on Piazza.

November 17 (a.m.)

Structure of a Java programming

the package statement is the first statement in a Java source code file

classes in a package must be in a folder with the same name as the name of the package
by convention, names of packages begin with lower case letters

import statements follow

definition of the class follows that

the name of the class matches the name of the file that contains the definition of the class
by convention, the name of the class begins with a capital letter

within the definition of the class, there are definitions of methods

“method” is a synonym (or near synonym) of function, procedure, subroutine
distinction between method and function—a method is a function defined within a class
parts of a function. ..

— public or private

type of value that method returns to its caller

— (if method computes and returns no value, then the return type is void)
— name of method (begins with a lower case letter)

— list of method’s parameters together with the types of those parameters

— (the parameters are the information that the method needs to do its job)

the body of the method (a sequence of statements)

statements

CO ~J O UL i W N+

NN NN NN == = = = = = = s
G W NN O OO0 Utk W~ OO

00 ~J O U= Wi+~

— ==
N~ OO

— all statements end with a semicolon
— statements allow us to do arithmetic and store the result of a calculation (an assignment)

— we can use a statement to make a decision (if statements conditionally execute some other group of
statements)

— we can use a statement to repeat the execution of some group of other statements (for and while loops)
e variables

— names begin with a lower case letters
— names may be the concatenation of several words
— every word after the first is capitalized (“camel case”)

— programmer must explicitly specify the type of each variable: “int n = 5;

package wednesday ;

import java.util.List;
import java.util.ArrayList;

public class Wednesday {

public static void main(String [] aardvark) {
System.out.println ("Hi!”);

List<Integer> list = new ArrayList <>();

list .add(
list .add(
list .add(
list .add(
(
(

list .add
list .add

)

CoO UL W N — —
— — —

)

for(int n : list) {
System.out.println(n);
Y /) for
Y // main(String [])

Y // Wednesday

6 November 17 (p.m.)

package selection ;

import java.util.ArrayList;
import java.util.List;
import java.util.Random;

public class Selection {

public static List<Integer> makeList(int size, Random rng) {
List<Integer> result = new ArrayList <>();

for(int 1 = 0; i < size; i++) {

10

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
95
56
o7
58
59
60
61
62
63
64
65
66
67
68

result .add(rng.nextInt(100));
Y // for

return result;
Y // makeList(int, Random)

public static int posOfSmallest(List<Integer> data, int start) {
int bestGuessSoFar = start;

for(int i = start + 1; i < data.size(); i++) {
if (data.get(i) < data.get(bestGuessSoFar))
bestGuessSoFar = i;
Y/
Y /) for

return bestGuessSoFar;
Y // posOfSmallest(List<Integer>, int)

{

public static void exchange(List<Integer> data, int i, int j) {
int temp = data.get(i);
data.set (i, data.get(j));
data.set(j, temp);
} // exchange(List<Integer>, int, int)
public static void selectionSort(List<Integer> data) {
for(int i = 0; i < data.size(); i++) {
int j = posOfSmallest(data, i);
exchange(data, i, j);

Y /) for

Y // selectionSort(List<Integer>)
public static void printList(List<Integer> data) {

for (int datum : data) {
System.out.println (datum);

y /) for
Y // printList(List<Integer>)
public static void main(String[] args) {

Random rng = new Random ();
List<Integer> samples = makeList(16, rng);

printList (samples);
System.out. println ();
int index = posOfSmallest(samples, 8);
System.out.println(”index = 7 + index);
System.out.println ();

exchange(samples, 3, 4);

11

69
70
71
72
73
74
75
76
7
78
79

printList (samples);
selectionSort (samples);
System.out.println ();
printList (samples);

Y // main(String [])

Y // Selection

7 November 18 (a.m.)

7.1 Definition of “variable”

Computer scientists use the word “variable” in a different way than do mathematicians and engineers.

For a mathematician, “variable” might connote the unknown quantity. The variable is a placeholder for a value we
do not yet know. We solve an equation to find a variable’s value.

For an engineer, “variable” might connote the changeable or adjustable value. We turn a knob to increase voltage,
temperature, or the brightness of a light.

For a computer scientist, “variable” simply means a named location in the computer’s memory. Six attributes
completely define a variable:

® name

location (also called address)

e value

e type
® scope

e lifetime

Name: Your computer’s memory holds billions of cells. Your variable is one of those cells. Rather than refer to
memory cell 2,319,908,435 we will refer to the cell by a name. We get to choose the name. We might, for
example, call it “highestTemperaturelnJuly.”

Address: Our computer’s operating system will find a free memory cell for us when we create a variable. It will
associate that cell’s numerical address with the name we give to our variable. Because we seldom need to
know the numerical address of our memory cell, few programming languages let us see the numerical address.

Value: We can store many kinds of information in a computer’s memory. We can store photographs, video
recordings, recordings of music and speech, and letters to Mom. In the end, our software will reduce it all to
numbers. Computer scientists have invented codes they use to represent images, sounds, and text as numbers.
You probably know the names of some of these codes (for example, JPEG and MP4) but might not know
the names of others (for example, Unicode or the IEEE Standard 754 for the representation of floating point
numbers). The good news—you do not need to know anything about these codes. (Well, there might be some
few circumstances in which it might help to know a little.) The value is the number that we store in our
named location in the computer’s memory or, in other contexts, its translation to a letter, a pixel, or a tone.

12

—_

O © 00O Uk W

Type: The type of a variable signifies how the value is represented in memory and how we may use the variable.
For example, addition makes sense with some types but not with others. Knowing that a variable’s type is
“32 bit signed integer” also tells us the range of values that the variable might hold. (For the curious—that
type allows values from —2147483648 to +2147483647.)

Scope: The scope is that part of our program in which we may refer to our variable. If you work in an office, you
put limits on who can browse through the contents of your filing cabinet. Similarly, programmers restrict
the visibility of variables within a program. Some parts of the program can access the variable. Other parts
cannot.

Lifetime: Our software might create some variables even before the computer begins the execution of our program.
Our program might also create some variables during its execution. When a program is done with a variable,
it can release that memory. Variables are born and variables die. A variable has a lifetime.

7.2 Primitive and reference types
Java has 8 primitive types:

e int

e byte

e char

e short

e long

o float

e double
e boolean

When you type “int n = 5;* you are telling the computer to allocate 32 bits of memory, give that memory the name
‘n‘, and store the number 5 in that memory cell.

Java also has reference types.

When you type “Color background = new Color(128, 192, 248);“ you are telling the computer to allocate enough
memory to hold an instance of the ‘Color‘ class and also enough memory to store the address of that block of
memory that holds the description of the color. The computer stores the address of that block of memory in the
memory cell named ‘background‘. It does not store the ‘Color‘ object in that memory cell. The memory cell that
holds the address of the ‘Color* object and the memory cells that hold the ‘Color object will likely be very far
apart—the address is unlikely to be adjacent to the object.

8 November 18 (p.m.)

package othersorts;

import java.util.Arrays;
import java.util.ArrayList;
import java.util.List;

public class OtherSorts {

public static void main(String [] args) {
// A list whose first 4 elements are in order

13

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

Integer [] samples = { 2, 5, 8, 14, 6, 4, 1, 11 };
List<Integer> data = Arrays.asList(samples);

for(int n : data) {
System.out.println(n);

y /) for

// Can you write code that will transform the
// list so that it looks like this:

// A list whose first 5 elements are in order
/)2, 5,6, 8, 14, 4, 1, 11

Integer [] a={ 2, 4, 7, 12 };
List<Integer> aList = Arrays.asList(a);

Integer [] b= { 1, 5, 17, 19 };
List<Integer> bList = Arrays.asList(b);

List<Integer> cList = new ArrayList <>();
// Can you write code that will fill cList

// with all of the numbers in aList and bList
// in order?

Y // main(String [])

Y // OtherSorts

9 November 18: Guidelines for writing

Put a subject and a verb in every sentence. Write complete sentences.

— “For example, Simon and Garfunkel.” is not a sentence.

— “For example, Simon and Garfunkel performed together.” is a sentence.
Tell your reader who did what rather than what was done to whom.

— Favor the active voice over the passive voice.
— “The house was painted by the owner.” is in the passive voice.

— “The owner painted the house.” is in the active voice.
Prefer several short sentences to a single long sentence.
Divide large paragraphs into 2 or 3 shorter paragraphs.

Be careful when you cut and paste text. If not careful, you might copy more or less than you want. Your
readers might then see repeated words or look for missing words. This could frustrate or confuse your readers.

You may write in the first person: “I share some of the interests that the company’s software engineers listed.”
You should express personal opinions.

— Rather than write “I feel that I would enjoy working with these people” write “I would enjoy working
with these people.”

14

10 November 18: Understanding and comparing sorting algorithms

10.1 Measuring computational complexity
e My favorite definition of computer science (in the form of 4 questions)

— What kinds of problems can I solve with the help of a computer? (Computability)
— Given a problem that I can solve, how can I write the program?
— Given two programs that solve a problem, how can I pick the best one? (Complexity)

— Given a program that solves my problem, how can I prove that it really will solve my problem every
time without error? (Correctness)

10.2 “Big-Oh”

O(N?) means the time required to sort the list is roughly proportional to the length of the list squared.

O(N log N) means the time required to sort the list is roughly proportional the length of the list times the logarithm
of the length of the list.

e What is a logarithm?

210 = 1024

log2!% =10
216 — 65536
— log2'6 =16

10.3 Complexity of sorting algorithms
e selection sort is O(N?)
e insertion sort is O(N?)

e merge sort is O(N log N)

11 November 19 (a.m.)

11.1 Sequential Search

e search in an unsorted list

e must examine every element in the list

e O(N)

e for example, to search for the minimum value

— begin by assuming that the first value is the minimum
— examine each other value in turn

— update our estimate of which value is smallest as necessary

15

11.2 Selection Sort
e O(N?)
e begin by finding the position of the smallest value in the whole list
e move that value to the front of the list (by exchanging its value with the value at position 0)

e then search through that part of the list that begins at position 1, looking for the position of the smallest
value in that part of the list

e move that element to position 1

e then search through the part of the list that begins at position 2, move the smallest element in that part of
the list to position 2, and so on

e at the k*" step of the selection sort, the first k elements are in order

e at the k" step, the first k& clements are the k smallest elements in the list

11.3 Insertion Sort
e O(N?)
e at the k" step, the first k elements of the list are in order
e at the k" step, the first k elements are the first & elements that we saw in the list before starting the sorting

e at each step, move the element at position k£ + 1 into the right place among the k elements are already sorted

11.4 There are searches inside both sorts!

e in the selection sort, the search is from left to right through the unsorted part of the list
e in the insertion sort, the search is from right to left through the already sorted part of the list

e the search in the insertion sort might not have to examine every element in the sorted part of the list

the search in the selection sort does have to examine every element in the unsorted part of the list

the insertion sort is (on average) faster than the selection sort (but both are still O(N?)!)

insertion sort works best on lists that are already nearly in order

11.5 Merge Sort

e key insight: if I have two already sorted lists, merging them to produce one bigger sorted lists is easy
e can be done recursively

e sort the two halves of our list

e merge the two halves

e how to sort each half?7—sort two quarters and merge!

e how to sort each quarter?’—sort two eighths and merge!

e this is a recursive algorithm (it is also possible to write the merge sort without recursion)

e this is a divide and conquer algorithm

e this is a O(N log N) algorithm

16

12 November 29: A class as a blueprint

Here is a program that defines a class that models a weight, creates several instances of that class, and exercises
the methods of that class.

A class that models a length (feet and inches), time (hours and minutes), fraction (numerator and denominator),
vector (x and y components), or complex number (real and imaginary parts) will be very similar. In each case, the
class models a number with two parts and a special rule for addition.

Get a version of this program working on your own computer. Then try writing a program that defines a class that

CO O UL W N

models a length or time.

package weight;

public class Weight {
private static final int OUNCESIN_A POUND = 16;

private int pounds;
private int ounces;

public Weight(int pounds, int ounces) {
this.pounds = pounds;
this.ounces = ounces;

Y // Weight(int, int)

public int getPounds() {
return this.pounds;

Y // getPounds ()

public int getOunces() {
return this.ounces;

} // getOunces()

public void setPounds(int pounds) {
this.pounds = pounds;
Y // setPounds(int)

public void setOunces(int ounces) {
this.ounces = ounces;

} // setOunces(int)

public Weight add(Weight otherWeight) {
int lbs = this.pounds + otherWeight .pounds;
int oz = this.ounces + otherWeight.ounces;

Weight sum = new Weight(lbs + 0z/OUNCESIN_A POUND,

0z % OUNCESIN_A POUND);
return sum;

Y // add(Weight)

@Override
public String toString () {

return this.pounds + ” 1bs., ” + this.ounces + 7 oz.

Y // toString ()

public static void main(String [] args) {
Weight cherries = new Weight(1, 10);
Weight grapes = new Weight(2, 8);
Weight fruit = Cherries.add(grapes);

17

)

47
48
49
50

=W N

T W N

System.out.println(cherries + 7 + 7 + grapes + 7 =7 + fruit);

Y // main(String[])

Y // Weight

13 November 29: Parts of a class

The definition of a class begins with a ‘package’ statement. By convention, the name of a package begins with a
lower case letter.

package weight;

A header follows. All of our classes will be ‘public’. By convention, we will give our classes a name that begins with
a capital letter:

public class Weight {

We might sometimes want to define a constant that will be shared by all instances of the class. The word ‘final
signifies a constant. The word ‘static’ signifies one copy of the constant that is shared by all instances of the class.

private static final int OUNCESIN_A POUND = 16;

A class will generally have instance variables. Each instance of the class has its own instance variables. By
convention, we will make these instance variables ‘private‘ and give them names that begin with a lower case letter.

private int pounds;
private int ounces;

A class has one (or more) constructors. A class differs from a method by the fact that it has no return type (in this
case, no ‘int‘* or ‘double‘ or ‘String’ or ‘void* between ‘public’ and ‘Weight‘) and its name is the same as the name
of the class.

The word ‘this* is a way to refer to an instance of the class that we are creating. The instance will get its own name
after we are completely done creating it.

In this example, the constructor has parameters named ‘pounds‘ and ‘ounces‘. The class also has instance variables
named ‘pounds‘ and ‘ounces‘. The parameter is not the same as the instance variable—there are 2 variables named
‘pounds‘ in this example! One is a parameter and one is an instance variable. We can distinguish between them by
prefixing the reference to the instance variable with ‘this‘.

public Weight(int pounds, int ounces) {
this.pounds = pounds;
this.ounces = ounces;

Y // Weight(int, int)

An accessor method (also called a getter) is a means of retrieving the value of a ‘private‘ instance variable. In this
way, we give teammates who are working on other parts of our program a means of peeking inside the instance of
a class.

A getter has no parameters.

The return type of a getter matches the type of an instance variable.

public int getPounds() {
return this.pounds;

Y // getPounds ()

public int getOunces() {

18

~N O Ot W N ~N O Uk W N

= W N

SO W N

return this.ounces;

Y // getOunces ()

Sometimes we will also want to give our teammates to change the values of our instance variables. For that, we
define setters (also called mutators).

These setters allow a programmer to give the instance variables any value at all. In other cases, you might want
setters that put limits on the new values of the instance variables. For example, you might want to prevent a
programmer from giving the denominator of a fraction a value of 0.

The return type of a setter is always ‘void‘. The type of its single parameter matches the type of an instance
variable.

public void setPounds(int pounds) {
this.pounds = pounds;
Y // setPounds(int)

public void setOunces(int ounces) {
this.ounces = ounces;

Y // setOunces(int)

Then we might have methods that combine values or do other useful work.

public Weight add(Weight otherWeight) {
int lbs = this.pounds + otherWeight .pounds;
int oz = this.ounces + otherWeight.ounces;
Weight sum = new Weight(lbs + o0z/OUNCESIN_A POUND,
0oz % OUNCESIN_A POUND);
return sum;

Y // add(Weight)

We will often want a method that gives us a printable representation of an instance of our class.

For this, we override the definition of a method that our class has inherited from the ‘Object’ class.

@Override
public String toString() {
return this.pounds + ” 1bs., ” + this.ounces + 7 o0z.”;

Y // toString ()

While every program that we write will have at least one method with a ‘main()‘ method, not every class has to
have a ‘main()‘ method.

However, even when it is not necessary to define a ‘main()‘ method, it will often be useful to do so. For example,
this ‘main()‘ method contains code that tests my ‘Weight* class.

public static void main(String[] args) {
Weight cherries = new Weight(1, 10);
Weight grapes = new Weight(2, 8);
Weight fruit = cherries.add(grapes);
System.out.println(cherries + 7 + 7 + grapes + 7 =7 + fruit);

Y // main(String[])

14 November 29: Learning how to use Git and GitHub

e Create an account on github.com.

e Login to your GitHub account.

19

15

Create a Personal Access Token.

— Select Settings.
— Select Developer Settings.

— Select Personal access tokens.
Save that token in a text file on your desktop.
Create an empty repository.
On your own computer, open NetBeans.

— Create a new project (a Java application).
— Add a Java class with a main method.

— Select Team / Git / Initialize Repository.
— Select Team / Commit.

— Select Team / Remote / Push

November 30: A class that models vectors

a vector has a length and a direction
the length of a vector is also called its magnitude
we can define vectors in 2, 3, 4, or more dimensions
vectors are very useful in computer graphics
we will use a special kind of vector (a kind you might not have seen in your physics or linear algebra course)
we will define a vector in 2 dimensions but our vector will have 3 components
U= (z,y,1)
the third coordinate allows us transform this vector through multiplication with 3 x 3 matrices
a 3 x 3 matrix can model a rotation, a scaling, or a translation
our Vector class will have 3 instance variables
- X

-y

— h (the homogeneous coordinate—in our work, h = 1 always)
our Vector class will have a constructor with 2 parameters (x and y)
our Vector class will have getters
our Vector class will have a ‘toString()* method

our Vector class will have ‘add()‘ and ‘subtract()‘ methods (each with a single parameter whose type is
“Vector*)

our Vector class will have a ‘dot()‘ method for computing the dot product of ‘this‘ vector with another vector

our Vector class will have a ‘magnitude()* method

20

0O Ui Wi+

U O O O O s W s s s B s B R s W W WWwWWwWwWwWWwNNoNNDNDNNNNRFERE P2
B WP OO TDHUE WNFEF O OO W OO0 Uk WP O WO Utk W~ OO

16 December 1: The start of the definition of the Vector class

package com.eonsahead.designvector;

NS
%

Vocabulary that you should know by
the end of our course:
encapsulation
information hiding
inheritance
polymorphism

Step 0. Define a class that has main() method, a

call to System.out.printin() in that main() method,

and nothing else. Compile and run.

Step 1. Add instance variables to the class. Compile.

Step 2. Add a constructor. Compile.

Step 3. Add a toString () method. Add code that creates

an instance of the class in the main() method. Add code

in the main method that prints the wvector.

Step 4. Add getters (also called accessor methods). Use NetBeans’
refactor / encapsulate fields command. Add code in main() method
that exercises the new methods.

Step 5. Add a method to compute a dot product of 2 wectors,

plus code to test that new method.

Step 6. Add a method to compute the magnitude of a

vector, plus code to test that new method.

¥ % %X %X %X %X %X X X X ¥ ¥ ¥ ¥ %X %X %X % % % %X *x %

*
™~

public class Vector2D {

// We might think of more than one

// way to organize the data in our class.
// 7"Information hiding” and "encapsulation”
// mean that the programmers who use our
// class do nmot need to know which of the
// alternatives we chose.

// We could define 8 separate instance variables.
// private double x;
// private double y;
// private double h;

// Or we could define a single instance variable
// that is an array.

// (Because we have chosen not to define any

// setters, we could make this instance wvariable

// final.)

private double[] components = new double[3];

public Vector2D (double x, double y) {

this.components [0] = x;
this.components[l] = y;
this.components[2] = 1.0;

Y // Vector2D(double, double)

21

55 public double getX () {

56 return this.components [0];

5T } /) getX ()

58

59 public double getY () {

60 return this.components|[1];

61| 1 // getY()

62

63 public double getH() {

64 return this.components|[2];

65| 1 // getH()

66

67 // stub method

68 public double dot(Vector2D other) {

69 return this.getX () * other.getX() + this.getY () * other.getY ();
70 Y // dot(Vector2D)

71

72 public double magnitude() {

73 return Math.sqrt (this.dot(this));

74 Y // magnitude ()

75

76 // Owerride annotation is helpful but optional.

7 // It is a reminder to us and to the compiler that

78 // we are redefining a method that this class

79 // inherited from the Object class.

80 // (All classes inherit from the Object class.)

81 @Override

82 public String toString() {

83 // Java’s String class provides a method for

84 // formatting strings.

85 /) %8.4f is a formatting code.

86 // It means a floating point value

87 // represented with 8 digits in total,

88 // including 4 digits to the right of

89 // the decimal point.

90 return String.format (7 (%8.4f,%8.4f)”, this.getX (), this.getY ());
91 Y // toString ()

92

93 public static void main(String[] args) {

94 Vector2D u = new Vector2D (3, 4);

95 System.out.println ("u =7 + u);

96 System.out.println (”x component of u =" + u.getX());
97 System.out.println (”y component of u =" + u.getY());
98 System.out.println (”h component of u =" + u.getH());
99

100 Vector2D v = new Vector2D (5, 12);

101

102 System.out.println (”dot product =7 + u.dot(v));

103

104 System.out.println ("magnitude of u =" + u.magnitude());
105 System.out.println (?magnitude of v =7 + v.magnitude());
106

107 Y // main(String [])

108

109 |} // Vector2D

22

17 December 2

1. Inside the selection sort algorithm there is a search algorithm. Explain.

2. (a) What does f() return to its caller?
(b) What does g() return to its caller?

1 public static int f(List<Integer> data) {
2 int bestGuessSoFar = data.get (0);

3

4 for(int i = 1; i < data.size(); i+) {
5 if (data.get(i) < bestGuessSoFar) {
6 bestGuessSoFar = data.get (i);

7 Y /)it

8 Y /) for

9

10 return bestGuessSoFar;

11 Y // f(List<Integer>)

12

13 public static int g(List<Integer> data) {
14 int bestGuessSoFar = 0;

15

16 for(int i = 1; i < data.size(); i++) {
17 if (data.get(i) < data.get(bestGuessSoFar)) {
18 bestGuessSoFar = i;

19 Y/

20 Y /) for

21

22 return bestGuessSoFar;

23 Y // f(List<Integer>)

3. The selection sort and the insertion sort are both O(N?) algorithms. The merge sort is an O(N log N)

algorithm.
N N? Nlog N
32 1024 32-5 =160

1024 1024 -1024 = 1,048,576 1024 - 10 = 10, 240
In English, why might you favor the merge sort?

4. Merge sort is a divide and conquer algorithm. What does this mean?
5. The first statement in a Java source code file will be what kind of statement?

6. Which of these class headers conforms to our guidelines for good style?

// (a.)

public class time {

/7 (b.)

public class Time {

7. What does static final signify in this statement?

1 public static final int MINUTESIN_AN HOUR = 60;

8. Which of these two pairs of statements conforms to our guidelines for good style?

23

// (a.)

private int hours;
private int minutes;

// (b.)

public int hours;
public int minutes;

N OO WD

9. This is a constructor. How can you tell?

public Time(int hours, int minutes) {
this.hours = hours;
this.minutes = minutes;

Y // Time(int, int)

[ENEGCR N

10. What kind of method is this?

1 public int getHours() {
2 return this.hours;

3 Y // getHours ()

11. What is the purpose of this method?

1 @Override

2 public String toString() {

3 return String.format(”"%2d:%2d”, this.hours, this.minutes);
4 Y // toString ()

12. This is a stub method. Why do programmers write stub methods?

1 public Time add(Time anotherTime) {
2 return new Time(0, 0);

3 Y // add(Time)

13. Complete the definition of this method.

1 public Time add(Time anotherTime) {

2 int sumOfHours = this.hours + anotherTime. hours;
3 int sumOfMinutes = this.minutes + anotherTime.minutes;
4

5 // TO-DO: Assign the correct value to h.

6 int h = 0;

7 // TO-DO: Assign the correct value to m.

8 int m = 0;

9

10 return new Time(h, m);

11 Y // add(Time)

18 December 2: How to push local files to a GitHub repository
e How to upload a NetBeans project to GitHub

24

https://javawithumer.com/2019/07/how-to-upload-netbeans-project-to-github.html

O O UL W N+

G W W W W WWWWWNNNDNDNDNDNNDNDN ===
QOO DU R WNRHFRF OO WNDRFE OO O Uk W~ OO

19 December 2: IBM Watson: Final Jeopardy!

Watson

e IBM Watson: Final Jeopardy! and the Future of Watson

20 December 2: Turing Award winners

Please read for an hour on this website. Begin to familiarize yourself with some of the principal contributors to the
development of computer science, some of the most important achievements in the field, and some the special areas

of research in which computer scientists work.

21 December 3: Modeling a fraction

// TO-DO: Add a package statement.
public class Fraction {

// TO-DO: Add a Javadoc comment here.
private final int numerator;

// TO-DO: Add a Javadoc comment here.
private final int denominator;

// TO-DO: Add a Javadoc comment here.
public Fraction(int numerator, int denominator) {

// TO-DO: Complete the definition of this constructor.

// Represent the fraction in the simplest form:
// for example, 2/3 instead of 4/6 or 18/27.

// Reduce a fraction to its simplest form by
// dividing the numerator and denonimator by
// the greatest common divisor of the two
// numbers. Use the gcd() method (defined below)
// to compute the greatest common divisor.
Y // Fraction(int, int)

// Do not define getters or setters for this ezxzercise.
// TO-DO: Add a Javadoc comment here.
public Fraction add(Fraction otherFraction) {
// This is a stub method.
// TO-DO: Complete the definition of this method.
// For example: a/b + c¢/d = (ad + cb)/(bd)

return new Fraction(0, 1);
Y // add(Fraction)

// Do not define methods for subtraction, multiplication ,

// or division——but convince yourself that doing this
// would not be hard.

25

and the Future of

https://youtu.be/lI-M7O_bRNg
https://amturing.acm.org/byyear.cfm

41
42
43
44
45
46
47
48
49
50
o1
52
53
54
55
56
o7
o8
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90

// TO-DO: Add a Javadoc comment here.
public String toString () {
// This is a stub method.

// TO-DO: Complete the definition of this method.

return "0/17;

Y // toString ()

// TO-DO: Add a Javadoc comment here.
private int gcd(int a, int b) {
// This is a "helper” method.
// It helps constructors or other methods within
// the class do their jobs.
// Because all calls to this method will
// be within this class, the method can be

// private.

// Compute the greatest common divisor
// of a and b recursively.

// For example: gcd (12, 8) = 4

// A recursive method has an if statement
// and a call to itself.

if(b=10) {
// Here is where the recursion stops.
return a;

Y /S

else {
// Here is where the gcd() method
// calls the gecd() method——this is
// the recursive call.
return ged(b, a % b);

Y /) else

Y // ged(int, int)

public static void main(String [] args) {
// Test the methods of the Fraction class.
Fraction a = new Fraction(12, 20);
Fraction b = new Fraction(6, 20);

// TO-DO: Add code to produce the sum of a and b.

// TO-DO: Add code to print a, b, and the sum of a and b.

Y // main(String [])

Y // Fraction

26

22 December 3: Cats Cradle program

Vector2D

-x: double

-y: double

+Vector2D(x:double, y:double)

+add (v:Vector2D) : Vector2D

+scale(xFactor:double, yFactor:double): Vector2D

+scale(factor:double): Vector2D

+rotate{angle:double) : Vector2D

+rotateScaleTranslate(angle:double,scaleX:double, scaleY:double,
deltaX:double,deltaY:double): Vector2D

+dot (v:Vector2) : double

+magnitude(): double

+getX(): double

+gety(): double

+toString(): String

22.1 CatsCradle.java

package vector2d;

import java.awt.Container;
import javax.swing.JFrame;
import javax.swing.Timer;

0O Ut Wi+

* ¥
* Here is a final exzercise.

*

* <p> This example features animated graphics and a class that models a kind of
* mathematical object that has two parts (a vector in two dimensions). </p>

*

* @Qauthor CSC140 Foundations of Computer Science

* @Quersion 6 March 2013

*/

public class CatsCradle extends JFrame {

VAT

* Choose wvalues for these parameters that make a pleasing image——experiment!
*/

private static final int FRAMEWIDTH = 512;

private static final int FRAMEHEIGHT = 512;

private static final String FRAMETITLE = ”Cat’s Cradle”;

private static final int NUMBER.OFSIDES = 12;

Jxx
* Create a window on the screen, put a panel in the
* frame on which to draw a picture, and create a timer
* that will send periodic signals to the panel that ask it to
* redraw itself.
*/
public CatsCradle() {
this.setSize (FRAMEWIDTH, FRAME HEIGHT);
this.setTitle (FRAME.TITLE);
this.setDefaultCloseOperation (JFrame.EXIT_ ON_CLOSE) ;

// A JFrame contains a pane to hold panels, buttons,

// scrollbars , and anything else we want to put into

// our JFrame.

Container pane = this.getContentPane ();

CatsCradlePanel panel = new CatsCradlePanel (NUMBER_OF_SIDES);
pane.add(panel);

27

44
45
46
47
48
49
50
51
52
53
54
95
56
57
58
59
60
61
62
63
64
65
66

OO UL W N+

O I I I T T T N N T N Sy S G S G Sy W GG
S 0TS AR WN OO U R WN R~ O ©

// The 720" here means 20 milliseconds .

// That means a new image 50 times per second.
// You can try something different.

// (Smaller values will result in more images
// per second: 10 milliseconds between images
// equals 100 images/second.)

Timer timer = new Timer (20, panel);
timer.start ();

this.setVisible (true);
Y // CatsCradle(int, int)

VAT
* The execution of this program begins here.
*
* @param args is a required array that could hold command line
*x arguments (but we will not use any command
*x line arguments in this example).

*/

public static void main(String [] args) {

CatsCradle catsCradle = new CatsCradle ();

Y // main(String [])
} // CatsCradle

22.2 CatsCradlePanel.java

package vector2d;

import java.awt.BasicStroke;

import java.awt. Color;

import java.awt.Graphics;

import java.awt.Graphics2D;

import java.awt.Stroke;

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.awt.geom.Line2D ;

import java.util.Random;

import javax.swing.JPanel;

public class CatsCradlePanel extends JPanel implements ActionListener {

// Specify the color of the background on which the figures
// will be drawn.

private static final Color BGCOLOR = new Color (72, 12, 12);
private static final Color FG.COLOR = new Color (180, 192, 224);
// MARGIN gives some separation between the figures drawn
// and the edge of the panel in which they are drawn.

// The value must be at least zero and less than 0.5.
private static final double MARGIN = 0.1;

// Bigger wvalues of SPEED result in a slower animation.

// Smaller values of SPEED result in a faster animation.
private static final double SPEED = 64.0;

// Specify the thickness of the line segments used

// to draw the inside and outside figures.

private static final float OUTSIDE_LINE THICKNESS = 4;

28

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
55
56
o7
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

private
private
private
private
private
private
private
private
private
private

public
this.
this .
this
this
this .
this
this.
this

this.

static final float INSIDE_LINE_THICKNESS = 2;
int numberOfSides;

double outerStep;

double innerStep;

double outerAngle;

double innerAngle;

double angle;

Color [] colors;

Stroke insideStroke;

Stroke outsideStroke;

CatsCradlePanel (int numberOfSides) {
setBackground (BG.COLOR) ;
setForeground (FG.COLOR) ;

.numberOfSides = numberOfSides;
.outerStep = —2.0 * Math.PI / (SPEED % numberOfSides);

innerStep = +2.0 * Math.PI / (2.0 % SPEED % numberOfSides);

.outerAngle = 0.0;

innerAngle = 0.0;

.insideStroke = new BasicStroke (INSIDE_LINE_THICKNESS,

BasicStroke .CAPROUND, BasicStroke.JOINROUND);
outsideStroke = new BasicStroke (OUTSIDE_LINE_THICKNESS,
BasicStroke .CAPROUND, BasicStroke.JOINROUND);

// Make a palette of random numbers.

this.

colors = new Color [numberOfSides];

Random random = new Random ();

for (

//
//
//
//
int
int
int

int i = 0; i < numberOfSides; i++) {
In the following 8 statements, instead
of 64 and 192 you may use any pair of
non—negative integers whose sum is 256
(or less than 256 if you wish).

red = 64 + random.nextInt (192);

green = 64 + random.nextInt (192);
blue = 64 + random.nextInt (192);

this.colors[i] = new Color(red, green, blue);

Y/

for

Y // CatsCradlePanel ()

@OQOverride

public
super

void paintComponent (Graphics g) {
.paintComponent (g);

Graphics2D g2D = (Graphics2D) g;

// Determine the dimensions of the panel

int w
int h

which we are drawing the figure.
= this.getWidth ();
= this.getHeight ();

// Make 2 sets of wvertices.
// The outside vertices lie on a circle
// whose radius is 1.0 and whose center

/) is

at the origin.

// The inside wvertices lie on a circle
// whose radius is the golden ratio and whose center

29

86

87

88

89

90

91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

// is also at the origin.
Vector2D [] outside = new Vector2D [this.numberOfSides];
Vector2D [] inside = new Vector2D [this.numberOfSides];
double goldenRatio = 2.0 / (Math.sqrt (5.0) + 1);
for (int i = 0; i < this.numberOfSides; i++) {
double fraction = ((double) i) / this.numberOfSides;
this.angle = fraction % 2.0 x Math.PI;
double x = Math.cos(angle + outerAngle);
double y = Math.sin (angle + outerAngle);
outside [i] = new Vector2D (x, y);

x = Math.cos(angle + innerAngle);
y = Math.sin (angle + innerAngle);
inside [i] = new Vector2D (goldenRatio % x, goldenRatio * y);

} // for

// Make the 2 polygons that are defined by the convexr hulls of

// of the outside and inside sets of points (respectively).

// If there are 3 points in a set, we get an equilateral triangle.
// If there are 4 points, we get a square.

// If there are more points, we get a pentagon, hexragon, or n—gon.

// No rotation in this step——we’ll take care of that elsewhere.
double rotation = 0.0;

// This is how much bigger we have to make

// the figures to fill the panel (and still

// leave a margin between the figures and the

// edge of the panel).

double scaleX = (1.0 — 2.0 * MARGIN) * w / 2;
double scaleY = (1.0 — 2.0 * MARGIN) *« h / 2;

// This is how far we have to move the figures

// to put their centers at the center of the panel.
double deltaX =w / 2;

double deltaY = h / 2;

g2D . setColor (FG.COLOR) ;
for (int i = 0; i < outside.length; i++) {
Vector2D u = outside[i];
u = u.rotateScaleTranslate (rotation , scaleX, scaleY , deltaX, deltaY);

Vector2D v = outside[(i + 1) % this.numberOfSides];
v = v.rotateScaleTranslate (rotation , scaleX , scaleY , deltaX, deltaY);

double x0 = u.getX ();
double y0 = u.getY ();
double x1 = v.getX ();
double yl = v.getY ();

Line2D line new Line2D.Double(x0, y0, x1, yl);
g2D.setStroke (this.outsideStroke);
g2D . draw (line);

u = inside[i];
u = u.rotateScaleTranslate (rotation , scaleX , scaleY , deltaX, deltaY);

v = inside [(1 + 1) % this.numberOfSides]|;
v = v.rotateScaleTranslate (rotation , scaleX , scaleY, deltaX, deltaY);

30

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197

x0 = u.getX ();
y0 = u.getY ();
x1 = v.getX ();
yl = v.getY ();

line = new Line2D .Double(x0, y0, x1, yl);
g2D.setStroke (this.insideStroke);
g2D.draw (line);

} /) for

// Make the remaining edges (line segments) needed to define
// the complete graph on the outside set of points.
g2D.setStroke (this.outsideStroke);
for (int i = 0; i < this.numberOfSides; i++) {
Vector2D u = outside [1i];
u = u.rotateScaleTranslate (angle, scaleX, scaleY, deltaX, deltaY);
double x0 = u.getX ();
double y0 = u.getY ();
for (int j =1 + 1; j < this.numberOfSides; j++) {
Vector2D v = outside[j];
v = v.rotateScaleTranslate (rotation, scaleX, scaleY , deltaX, deltaY);
double x1 = v.getX();
double yl = v.getY ();

// Make color a function of the line segment’s length.
// (The segment is longer if it connects wvertices whose
// indices differ more.)

int index = Math.abs(i — j);
g2D.setColor (this. colors[index]);

Line2D line = new Line2D.Double(x0, y0, x1, yl);
g2D .draw (line);

} /) for
} /) for

// Make the remaining edges (line segments) needed to define
// the complete graph on the inside set of points.
g2D.setStroke (this.insideStroke);
for (int i = 0; i < this.numberOfSides; i++) {
Vector2D u = inside[i];
u = u.rotateScaleTranslate (angle, scaleX, scaleY, deltaX, deltaY);
double x0 = u.getX ();
double y0 = u.getY ();
for (int j =1 + 1; j < this.numberOfSides; j++) {
Vector2D v = inside[j];
v = v.rotateScaleTranslate (rotation , scaleX , scaleY , deltaX, deltaY);
double x1 = v.getX ();
double yl = v.getY ();

// Make color a function of the line segment’s length.
// (The segment is longer if it connects wvertices whose
// indices differ more.)

int index = Math.abs(i — j);

g2D . setColor (this. colors [index]);

31

198
199
200
201
202
203
204
205
206
207
208
209
210

OO UL W N+

LW W WWWWWWWwWwNhNoNoNDNDNDNNNDN ==
OO TR WNFFEF OO Uk WNNFE O OO Utk W~ OO

Line2D line = new Line2D.Double(x0, y0, x1, yl);
g2D.draw (line);

Y /) for
} /) for

Y // paintComponent(Graphics)

@Override

public void actionPerformed (ActionEvent e) {
this.outerAngle += this.outerStep;
this.innerAngle += this.innerStep;
this.repaint ();

} // actionPerformed(ActionEvent)

} // CatsCradlePanel

22.3 Vector2D.java

package vector2d;

/

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
This class models a vector in two dimensions.

<p>
Like a length (feelt and inches), weight (pounds and ounces), time (hours and
minutes), fraction (numerator and denominator), a complex number (real and
imaginary parts), a 2D vector is a thing with two parts that can be added.

</p>

<p>
Complete the definitions of the constructor and the following methods:
</p>

add()

scale ()

scale ()

rotate ()

dot()

magnitude ()

getX ()

getY ()

toString ()

@author CSC140 Foundations of Computer Science
@uersion 6 March 2013

*/
public class Vector2D {

private double x;
private double y;

Jxx

* A wvector can represent a point.

32

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

*
* @param x 1s the z coordinate of the point.
* @param y is the y coordinate of the point.
*

/
public Vector2D (double x, double y) {
this.x = x;
this.y = y;
Y // Vector2D(double, double)

Jxx

* The addition of one wvector to another produces a third wvector.
*

* <p>

* The components of the sum are the sums of the corresponding components of
* the wvectors we add.

* </p>

*

* <p>

* u = (ux, uwy)

x v = (vr, vy)

x u + v = (uxr + vr, uwy + vy)

*x < /p>

*

* @param v is the vector to be added to this one.

* @return the sum of this wvector and the other wvector.

*/
public Vector2D add(Vector2D v) {

return new Vector2D (0.0, 0.0);
Y // add (Vector2D)

Jxx
* Multiplication of the components of a wvector stretches the wvector.
*

<p>

Scaling v = (u_z, u.y) by (xFactor, yFactor) produces a new wvector:
(zFactor * uzx, yFactor * uy).

</p>

@param zFactor is the amount of horizontal stretching.
@param yFactor is the amount of wvertical stretching.
Q@Qreturn

* %X X %X %X %X %X %

*/

public Vector2D scale (double xFactor, double yFactor) {

return new Vector2D(0.0, 0.0);

Y // scale(double)

Jxx

* We will often want to stretch a vector the same amount in the horizontal
* and wvertical directions.

*

* <p>

x Scaling v = (uzx, uy) by factor produces a new wvector: (factor »* uz,

x factor * uy).

x </p>

33

96 *

97 * <p>

98 * If we think of a vector as an arrow, this operation produces a mew vector
99 * that has the same (or opposite when the scale factor is negative)
100 ¥ direction as the original but a different length.

101 *x < /p>

102 *

103 * @param factor is the amount of stretching.

104 x @return a stretched (or contracted) wvector.

105 */

106 public Vector2D scale (double factor) {

107

108 return new Vector2D(0.0, 0.0);

109 Y // scale(double)

110

111 Jxx

112 ¥ If we think of a wvector as an arrow rooted at the origin, then we can
113 * imagine rotating it like the hand on a clock.

114 *

115 * <p>

116 x Rotating a wvector whose components are (uzx, uwy) by psi radians produces a
117 x new vector whose components (z, y) are as follows:

118 x < /p>

119 *

120 * @param angle is the amount of rotation.

121 * @return is a rotated wversion of this wvector.

122 */

123 public Vector2D rotate (double angle) {

124 double sine = Math.sin (angle);

125 double cosine = Math.cos(angle);

126

127 double xCoord = cosine * this.getX () — sine * this.getY ();

128 double yCoord = sine x this.getX () + cosine * this.getY ();

129

130 return new Vector2D(xCoord, yCoord);

131 Y // rotate(double)

132

133 VAT

134 x We will often want to rotate, scale, and translate (move) a wvector in
135 * that order.

136 *

137 * @param angle is the amount of rotation.

138 * @param scaleX is the amount of horizontal stretching.

139 * @param scaleY is the amount of vertical stretching.

140 * @param deltaX is the distance moved in the horizontal direction.
141 * @param deltaY is the distance moved in the wvertical direction.
142 * @return is a rotated, scaled, and translated wversion of this wvector.
143 */

144 public Vector2D rotateScaleTranslate (double angle, double scaleX ,
145 double scaleY , double deltaX, double deltaY) {

146

147 Vector2D u = this.rotate (angle);

148 Vector2D v = u.scale(scaleX, scaleY);

149

150 return new Vector2D (v.x + deltaX, v.y + deltaY);

151 } // rotateScaleTranslate(double, double, double, double, double)

34

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

Jxx

* The dot product of this wvector with another wvector gives us a number.
*

* <p>

* u = (uxr, wy)

* v = (vr, vy)

¥ U ¥ V= uUT ¥ T + uy * vy

x </p>

*

¥ <p>

* This number is the length of the one wvector’s projection on the other
* (the length of its shadow).

x </p>

*

* @param v is the other wector in the dot product with this wvector.

* @return is the sum of the products of the wvector’s corresponding

* components.

*/

public double dot(Vector2D v) {

return 0.0;
Y // dot(Vector2D)

Jxx
* The magnitude of a wvector is its length.
*

* <p>
* u = (ux, uwy)

* |u| = sqret(uz"2 + uy°2)

* = sqri(u * u)

* </p>

*

* <p>

* The magnitude is also the square root of the dot product of the wvector
* with itself. This is just the same rule we use to find the length of the
* hypotenuse of a triangle.

x </p>

*

* @return the length of the wvector.

*

/

public double magnitude() {

return Math.sqrt (this.dot(this));

Y // magnitude ()
Jxx

* Here’s an accessor method to allow a read—only view of the wvector’s
* component from methods in other classes.
*
* @return the value of the wvector’s © component.
*/
public double getX () {
return this.x;

} /) getX()

35

208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248

Jxx
* Here’s an accessor method to allow a read—only view of the wvector’s y
* component from methods in other classes.
*
* @return the value of the wvector’s y component.
*/
public double getY () {
return this.y;

Y /) getY ()
Jxx

* Here’s a way to produce a printable representation of the wvector.

*

* @return the components of the wvector in parentheses and separated by a
* comma.

*/

@Override

public String toString() {

return 7 (” 4+ this.getX() + 7, 7 + this.getY () + 7)”;
Y // toString ()

/

*

More than one class in a program can have a <code>main()</code> method.

<p>
<code>main()</code> methods are a convenient place to put code that tests
the constructors and methods of a class.

</p>

@param args is an array that we do mot use but must include in every
<code>main()</code> method.

*/

public static void main(String[] args) {

Vector2D a = new Vector2D (3, 4);

Vector2D b = new Vector2D (5, 12);

* % % % %X %X % % *x %

”

System.out.println (”magnitude of a

Y // main(String [])
Y // Vector2D

+ a.magnitude ());

23 December 6: Work flow

Version control software like Git and GitHub makes collaboration easier.

Here’s how a project might develop:

e [create a new project on my own computer.

e I initialize (init) a new repository on my computer. I create source code and add it to the repository. I

commit these changes.

e I open a Web browser. I log into my GitHub account. I create a new, empty repository on GitHub.

36

e Back on my own computer (and working in an IDE like NetBeans), I push my local repository to the remote
repository on GitHub.

e I continue to write and test code on my computer. Periodically, I commit changes in the local repository
and push those changes from the local repository to the remote repository.

e You discover my project on GitHub. You decide that you want to use my program, experiment with it, and
maybe improve it by adding features or fixing bugs.

e You use GitHub’s fork command to copy the repository in my GitHub account to your GitHub account. Your
GitHub account now has a repository that contains a copy of my code plus a knowledge of the source of that
code. (The source is, of course, my GitHub account.)

e On your own computer, you now clone your new repository. You find the clone command in your IDE (e.g.,
NetBeans). Cloning copies the code from your GitHub account to your own computer. The repository on

your computer now contains the code plus a knowledge of its source—your GitHub repository.

e You edit the code on your computer. Periodically, you commit your changes and push those changes to the
remote repository on your GitHub account.

e When you are ready, you might then send me a pull request from your GitHub account. This tells me that
you have made some changes that you want me to review.

e [log into my GitHub account. I see your pull request. I inspect your code. It looks good! Now I can pull
your contribution from your GitHub repository into my GitHub repository. Now the published code contains
my original contribution plus your improvements.

24 December 6: How to describe a curve

24.0.1 Line
24.0.2 Explicit formulation

y=m-x+b

24.0.3 Implicate formulation

a-z+b-y+c=0

24.0.4 Parametric formulation

()=t -z1+(1—1t) x0
y(t) =t -y1+(1—1) yo

24.1 Other parametric curves

24.1.1 Circle

x(d) =xe+ 1 COSP
Y(¢) = ye +7-sing

37

24.1.2 Ellipse

x(p) =z.+a-cos¢
Y(¢) =y +b-sing

24.1.3 Lissajous figure

24.2

25

z(¢p) =z + 71 - cos(a-)
Y(¢) = ye + 1 cos(b- P)

Where to look for other formulae

Famous curves index

December 6: Where to learn more

25.1 GitHub tutorials

27

(from GitHub) Follow this Hello World exercise to get started with GitHub.
(from David J. Castner) GitHub & GIT Tutorial

(from W3Schools) Git Tutorial

Version Control with Git

Git Tutorial

December 6: How to get started on paper

Post a report on your progress each day this week.
Share a prospectus or abstract by Tuesday, December 7.

Share a bibliography by Wednesday, December 8. Aim for about 4 sources for this exercise. These may be
(and probably will be) online sources.

Share a rough draft of your paper by Friday, December 10.
Begin by reading and taking notes. As we did last week, avoid copying verbatim. Where you do repeat an

unusual word or phrase in your notes, annotate with a description (for example, title and page number) of
your source.

December 6: Fractal program

27.1 FractalSet.java

38

https://mathshistory.st-andrews.ac.uk/Curves/
https://docs.github.com/en/get-started/quickstart/hello-world
http://davidjcastner.github.io/git-tutorial/
https://www.w3schools.com/git/default.asp
https://www.udacity.com/course/version-control-with-git--ud123
https://github.com/jeb-tutorials/git-basics

0O Ut Wi+

DODO DO DO DD DD D D) D) = = s b b e e
OO N E W~ O WO~ U R WNRO©

OO UL W N+

package com.eonsahead.fractalset ;

import java.awt.Container;
import javax.swing.JFrame;

public class FractalSet extends JFrame {

private static final int FRACTALWIDTH = 768;
private static final int FRACTALHEIGHT = 768;
private static final String FRACTALTITLE = ”Fractal”;

public FractalSet () {

this.setDefaultCloseOperation (JFrame.EXIT_ ON_CLOSE) ;
this.setSize (FRACTALWIDTH, FRACTAL HEIGHT);
this.setTitle (FRACTALTITLE);

Container pane = this.getContentPane ();

FractalSetPanel panel = new FractalSetPanel ();
pane.add(panel);

this.setVisible (true);

Y // FractalSet ()

public static void main(String [] args) {
FractalSet fractalSet = new FractalSet ();

Y // main(String [])

Y // FractalSet

27.2 FractalSetPanel.java

package com.eonsahead. fractalset ;

import
import
import
import
import
import
import

public

java
java
java

java .
.awt.

java
java

.awt .
.awt .
.awt .
awt .

.awt .

Color;

Graphics;

Graphics2D;

geom . AffineTransform ;
image . BufferedIlmage ;
image . WritableRaster ;

javax.swing.JPanel;

class FractalSetPanel extends JPanel {

private static final int BITMAP WIDTH = 1024;
private static final int BITMAP HEIGHT = 1024;

private Bufferedlmage image;

public FractalSetPanel() {
this.setBackground (Color .CYAN);
int imageType = Bufferedlmage . TYPEINT RGB;

int w
h:

int

BITMAP_WIDTH;
BITMAP HEIGHT;

this.image = new Bufferedlmage(w, h, imageType);

39

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
55
56
o7
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79

Y // FractalSetPanel()

@Override

public void paintComponent (Graphics g) {
super . paintComponent (g) ;
Graphics2D ¢2D = (Graphics2D) g;

int w = this.getWidth ();
int h = this.getHeight ();

AffineTransform scale = new AffineTransform ();
scale.setToScale (((double) w) / BITMAP WIDTH,
((double) h) / BITMAPHEIGHT);

WritableRaster raster = this.image.getRaster ();
int [][] palette = new int [64][3];

Color startColor = Color .RED;
int r0 = startColor.getRed ();
int g0 = startColor.getGreen ();
int b0 = startColor.getBlue ();

Color endColor = Color .BLUE;
int rl = endColor.getRed ();

int gl = endColor.getGreen ();
int bl = endColor.getBlue ();

for (int i = 0; i < 64; i++) {
double fraction = ((double) i) / 63;
int red = (int) ((1 — fraction) * r0 + fraction * rl);
int green = (int) ((1 — fraction) * g0 + fraction = gl);
int blue = (int) ((1 — fraction) * b0 + fraction = bl);

palette [i[[0] = (int) (256 x Math.random ()); //red;
palette[i][1] = (int) (256 % Math.random()); //green;
palette[i][2] = (int) (256 % Math.random()); //blue;
switch (i % 4) {
case 0:
palette [i][0] = 12;
palette[i][1] = 248;
palette[i][2] = 248;
break;
case 1:
palette[i][0] = 248;
palette[i][1] = 248;
palette[i][2] = 12;
break;
case 2:
palette [i][0] = 248,;
palette[i][1] = 12;
palette[i][2] = 248;
break;
case 3:
palette [i][0] = 248,;
palette[i][1] = 192;

40

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

palette[i][2] = 248;
break;

}
Y /) for

int []
int []

double
double
double
double

double
double
double
double

blue = {0, 0, 255};
yellow = {255, 255, 0};

xMin = 0;
xMax = BITMAP WIDTH — 1;
yMin = 0;

yMax = BITMAP HEIGHT — 1;

uMin = 0.385; // 0.25;
uMax = 0.395; // 0.50;
vMin 0.375; // 0.25;
vMax = 0.385; // 0.50;

for (int row = 0; row < BITMAPHEIGHT; row++) {
double y = row;
for (int column = 0; column < BITMAP WIDTH; column++) {

double x = column;

double u = uMin + (uMax — uMin)
double v = vMin + (vMax — vMin)

* (x — xMin) / (xMax — xMin);
*+ (y — yMin) / (yMax — yMin);
Complex z = new Complex (0.0, 0.0);

Complex ¢ = new Complex(u, v);

int count = 0;

while (z.magnitudeSquared() < 4.0 && count < 64) {
/) 2z =2"2 + ¢
z = z.multiply (z);
z = z.add(c);
count—+-;

Y // while

if (count = 64) {
raster.setPixel (row, column, yellow);
Y /i
else {
raster.setPixel (row, column, palette[count]);

Y // else

if (row < column) {

raster.setPizel(row, column, yellow);
Vo if
else {

raster.setPizel(row, column, blue);

Y /) else

} /) for
Y /) for

g2D . drawlmage (image , scale, this);
Y // paintComponent(Graphics)

41

136
137 |} // FractalSetPanel

27.3 Complex.java

1 | package com.eonsahead.fractalset ;

2

3

4 | public class Complex {

5 /*

6 TO-DO: Define a class that models

7 complex numbers.

8

9 The class will have:

10 instance variables

11 a single constructor

12 a method named add() for adding the complex number to
13 another complex number

14 a method named multiply () for multiplying the
15 complex number times another compler number
16 a method named magnitudeSquared () for computing
17 the square of the complex number’s magnitude
18

19 Here ts the mathematics that you need to know:
20

21 Let i be the square root of —1.

22 What follows is mathematical notation.

23 In your program there will be no wvariable

24 named 1 and no variable that holds the square
25 root of —1!

26 The instance wvariables of the Complexr class
27 will both hold floating point values and

28 will both have the type double.

29

30 Let u be a compler number with a real part

31 equal to a and an imaginary part equal to b.
32 Both a and b are floating point values.

33 u = (a + bi)

34

35 Let v be a complex number with a real part

36 equal to ¢ and an tmaginary part equal to d.
37 Both ¢ and d are floating point values.

38 v = (c + di)

39

40 Then the sum of the two complex numbers is:

41

42 u+v=(a+c)+ (b+d)i

43

44 The sum is a complex number whose real part
45 is (a + c¢) and whose imaginary part is (b + d).
46

47 And the product of the two complex numbers is:
48

49 u * v = (a+ bi)(c+ di)

50 = ac + bi * di + adi + cbi

42

o1
52
53
54
55
56
o7
58
59
60
61

= (ac — bd) + ((ld = Cb)’L

The product is a complexr number whose real part
is (ac — bd) and whose imaginary part is (ad + cb).

The square of the magnitude of the complexr number
u =a + bi is a ¥ a + b * b.

*/

Y // Complex

28 December 7:

We are going to write a Java class that models a 2 x 2 real matrix.
First, a little review of mathematics, then some suggestions of how to translate the mathematics into Java code.

Let A and B be 2 x 2 matrices:

>
Il

apo Qo1
aio aii
boo bo1
bio b1

os]
I

Let AB be the product C of the two matrices:

_ | (aoo - boo + ao1 - bro) (aoo - bo1 + ao1 - b11)
(alo ~boo + aqy - b10) (alo ~bo1 + a1y - b11)

Element c¢;; of the product C can be expressed as the dot product of a row of A with a column of B:

Cij = 40 - boj + ai1 - by

Let’s define a Java class that models a 2 x 2 matrix.

Our class will include. ..

e instance variable(s)
e a constructor
e a method for computing the product of the matrix with another matrix

e a method that creates a printable representation of the matrix

The header of this class will look something like this. . .

43

[\

=W N

~N O Uk W N

CO O UL W N+

public class Matrix2x2 {

}

Of course, you could choose to give the class a different name.

We could define the instance variables this way. ..

private final double m00;
private final double m01;
private final double ml0;
private final double mll;

Or you could define the instance variables this way. ..

private final double [][] m = new double[3][3];

Again, you may choose different names for your instance variables.
You need not make the instance variables final (but think about reasons for making the choice one way or another).

Let’s define one constructor for the class. . .

public Matrix2x2(double m00, double m01,
double ml10, double mll) {

// Assignment statements needed here to assign wvalues
// to the instance wvariable(s).

Y // Matriz2z2(double, double, double, double)

Let’s define a method that produces a printable representation of the matrix. . .

@Override
public String toString () {

// TO-DO: Replace ”some string” with something
// more meaningful.

return ”some string”;

Y // toString ()

What might a printable representation of a matrix look like?

Let’s say we have a matrix M. ..

<
[

11 13
17 19

You might make this string from the matrix. ..

[[11, 13], [17,19]]

Or maybe you have a better idea?

The method that multiplies matrices will have one parameter. Its type will be Matrix2x2. It will return to its caller
an instance of the Matrix2x2 class.

44

SO W N

H O © 0O Utk Wi+

—

0O Ul Wi

S e e e e e e e T
O OO JODU WD~ OO

public Matrix2x2 multiply (Matrix2x2 other) {
// TO-DO: Write code that computes a, b, c, and d.

return new Matrix2x2(a, b, ¢, d);
Y // multiply (Matriz2z2)

If you chose to use 4 floating point variables to hold the values of the array’s elements, then you can compute the

product using 4 assignment statements. . .

double a = this.m[0][0] * other.m[0][0] +
this.m[0][1] * other.m[1][0];

double b = this.m[0][0] * other .m[0][1] +
this.m[0][1] * other.m[1][1];

double ¢ = this.m[1][0] * other.m[0][0] +
this.m[1][1] * other.m[1][0];

double d = this.m[1][0] * other m[0][1] +
this.m[1][1] * other.m[1][1];

If you choose to use a two-dimensional array to hold the values of the array’s elements, then you can compute the

product using 3 nested for loops. ..

double [][] product = new double[2][2];

// this approach will work for matrices of
// any size (mot just 2 x 2 matrices)

for(int i = 0; i < 2; i++) {
for(int j = 0; j < 2; j++) {
product[i][j] = 0.0;
for(int k = 0; k < 2; k++) {
product [1][]j] += this.m[i][k] * other.m[k][]];

} /) for
} /) for
} /) for

// the product array now contains the wvalues

// of a, b, ¢, and d

double a = product [0][0];
double b = product [0][1];
double ¢ = product [1][0];
double d = product [1][1];

Give the class a main() method. Put code that tests the multiply() method in main().

Confirm that the method produces these results. . .

45

T _Qin T
|: C.OS% SIII;lr :|
Sin 1 COS 4

cos} —sin%
sin cos §
2 2
V2 V2
2 2
10][2 0
0 2][0 2

Equations (1) and (2) are two different ways of expressing the same equality. Equation (2) contains the numerical

values of the sines and cosines in equation (1).

The two matrices on the left sides of equations (1) and (2) represent rotations by /4 radians. The matrix on the

right side represents a rotation by 7/2 radians.

The equations say: a rotation by 7/4 (45°) followed by another rotation by m/4 radians is the same as a single

rotation by /2 radians (90°).

Equation (3) shows the product of two scaling operations. Shrinking something to half of its original size, and then
doubling the size of that smaller object has the same effect as doing nothing at alll

29 December 7: 2 meanings of “class” in Java

Class can mean a collection of static methods

e the programs that we wrote in the first week of the course defined this kind of a class

e those programs defined static methods for finding the minimum value in a list, finding the position of the

minimum value, sorting the list, and so on

e we never created an instance of the class

e the class was simply a convenient holder of related functions

e another example is Java’s Math class

e the Math class holds functions for computing absolute values, square roots, sines and cosines, logarithms,

and so on

e (the Math class also contains definitions of constants: 7 and e)

e we never need to make an instance of the Math class—we do not need multiple math objects—we all live

and work with the same math!

e never write a statement like Math myMath = new Math()—that does not make sense!

e to call a method in this kind of class, write the name of the class, a period, and the name of the method:

double x = Math.sqrt(2.0);

Class can also mean a blueprint

e use the blueprint to create instances of the class

e “instance of class” and ”object” mean the same thing

e example: our Vector2D class or our ‘Weight‘ class

e we can create many vectors in program that draws a picture

46

[\]

e we can create many weights in a program adds items at the checkout counter in a supermarket

e to call a method in a class of this kind, we write the name of an instance of the class, a period, and then the
name of the method

Weight a = new Weight(1
Weight b = new Weight(2, 8);
Weight sum = a.add(b);

A complication. .. we can define classes that have static methods and non-static methods. We call the two kinds
of methods in two different ways. We can also include both static and non-static variables in a class.

For example, in our weight class, we defined a static variable. So we could write int ¢ = Weight. OUNCES_IN_A_POUND.

30 December 7: Scope and lifetime of variables

Let’s suppose that we are reading a mystery novel. In chapter 4, the hero and heroine pursue the suspect to a
distant city. After landing at the airport, they climb into a taxi. During the drive to their hotel, the taxi driver
tells them about a recent encounter with someone who looked very much like the object of their pursuit.

Our heroes met the taxi driver in chapter 4. They never see the driver again after climbing out of the taxi. The
book made no mention of the taxi driver in chapters 1-3. The book makes no mention of the taxi driver in any of
the chapters that follow chapter 4.

The scope of the taxi driver is chapter 4.
Variables in a computer program also have scope. A variable might appear only in one class or one method.

The author of the mystery could bring the taxi driver back into the story in the final chapter of the book. There
are no hard and fast rules in fiction writing. Certainly, there is no mechanism for enforcing rules. Authors of fiction
can do what they want. Although this freedom allows authors to confuse their readers, the best authors exercise
discipline. They make and follow their own rules. They avoid frustrating readers with unnecessary surprises.

The designers of programming languages have decided that it is better to have rules and mechanisms for enforcing
rules than it is to give programmers unbounded freedom. We cannot count on every programmer working with
self-imposed discipline.

How and where a programmer declares a variable (that is, how and where the programmer introduces the variable
into the story) will determine the variable’s scope. The compiler will prevent the programmer from referring to a
variable outside of its scope.

Variables also have lifetimes. A variable might be "born” midway through the execution of a program and might
”die” before the program completes its execution. Recall that a variable is a named location in the computer’s
memory. A variable is "born” when the system allocates a block of memory and gives that block of memory a
name. It ”"dies” when the system releases that block of memory, freeing it for other uses.

Attempts to retrieve a value from a block of memory that no longer belongs to the program will also trigger an
error, but a different kind of error than the one triggered by attempts to refer to a variable outside of its scope. The
compiler can detect violations of scope (and does so before execution of the program begins) but not references to
freed cells in the memory. The runtime system detects references to freed cells. It does this during the execution of
the program.

The scope of a variable tells us where in a program we may refer to a variable.

The lifetime of a variable tells us when during a program’s execution we may refer to a variable.

e Can you think of good reasons for limiting the scopes of variables?

e Can you think of good reasons for limiting the lifetimes of some variables?

47

O O UL W N+

e Would it not be nice if novels included tables that told readers where each character first enters the story?
Maybe programmers have something to tell novelists about how to write stories that are easier to follow!

31 December 7: Instance variables, parameters, and local variables

In this example. ..

\item \emph{pounds} and \emph{ounces} are instance variables
\item \emph{lbs}, \emph{oz}, and \emph{other} are parameters
\item \emph{totalPounds} and \emph{totalOunces} are local variables

The scope of an instance variable is the whole class. A programmer can refer to an instance variable from within
any of the class’ constructors or methods.

The scope of a local variable or a parameter is the constructor or method in which it is declared. A programmer
can refer to a local variable or parameter only from within a single constructor or method.

A local variable or a parameter is "born” when the program calls the method in which the variable or parameter
is declared. It ”dies” when that method finishes its work and control returns to the caller. Its lifetime therefore is
the same as the lifetime of the method.

An instance variable is "born” when the program creates an instance of the class. The program will store references
to an instance of the class in one or more other variables. For example. ..

Weight peaches = new Weight (2, 4);

Now peaches holds a reference (think ”address”) of an instance of the Weight class. When peaches and all other
variables that hold references to this instance of the class ”die”, so does the instance of the class and its instance
variables. A program called the ”garbage collector” watches your running programs. It will notice when all references
to an instance of a class have disappeared. Then it will dispose of that instance of the class.

public class Weight {
private final int pounds;
private final int ounces;

public Weight(int lbs, int oz) {
this.pounds = lbs;

this.ounces = o0z;

Y // Weight(int, int)

public Weight add(Weight other) {
int totalPounds = this.pounds + other.pounds;
int totalOunces = this.ounces + other.ounces;

return new Weight(totalPounds + totalOunces/16,
totalOunces % 16);

Y // Weight

32 December 8: Review of version control

32.1 Basics

e Git is a distributed version control system

e "distributed” means every member of the team has a complete copy of the program

48

e members of the team can work in parallel

e members of the team can work off-line

e software can merge contributions from 2 or more members of the team
e merging is the hard, complicated part of version control

e potential for "merge conflict”

e some merges are automatic—no human intervention required

e some merges require a person to decide which of the proposed changes to a program we want to keep

32.2 Learning how to use version control

e Step 0: one person on one computer
e Step 1: one person, a computer, and a remote repository

e Step 2: more than one programmer, all with their own computers, and a remote repository through which
they share their work

32.3 Version control commands
e init
e add
e commit
e push
e clone (get a copy from a remote repository to my computer)

e fork (get a copy from a repository on someone else’s GitHub account to my GitHub account) (a GitHub
command)

e pull request (a GitHub command)

e pull

e merge

e status (a way to see which changes have not yet been committed)

e log (a way to view a history of our project)

33 December 8: Mapping points

33.1 Rectangles in two coordinate systems

Programmers often define geometry in a world coordinate system that the programmers have defined for their own
convenience. Maybe this world coordinate systems allows programmers to specify the locations and dimensions of
very large objects in the physical world without scaling. The programmers can enter measurements made in the
real world into their programs. Maybe the programmers are modelling very small objects. In that case, the units
of measurement might be nanometers rather than kilometers. Maybe the right choice of a coordinate system will
make the arithmetic easier. For example, calculations might be easier if the origin of the coordinate system is at
the center of the figures that the computer will model and draw.

49

Programmers then need a way to translate between world coordinates and device coordinates (the coordinate system
on which the programmer locates pixels on the computer’s screen).

Let’s suppose that we have a world coordinate system in which the horizontal and vertical axes are labeled = and
Y.
Let’s suppose that we have labeled the axes in the device coordinate system w and v.

Let (Tmin, Tmazs Ymin, Ymaz) define the boundaries of a rectangle in world coordinates.

® Tmin < Tmax

® Ymin < Ymazx

® I = I,,;, is the equation of a vertical line that defines the left boundary of the rectangle

® I = I,,., is the equation of a vertical line that defines the right boundary of the rectangle

® Yy = Ymin is the equation of a horizontal line that defines the bottom boundary of the rectangle

® Y = Ymaz 1S the equation of a horizontal line that defines the top boundary of the rectangle
Similarly, let (tmin, Umazs Vmins Umaz) define the boundaries of another rectangle in device coordinates.

® Unin < Umaz

® Unin < Umaz

® U = Uy is the equation of a vertical line that defines the left boundary of the rectangle

® U = Uyq, 1S the equation of a vertical line that defines the right boundary of the rectangle

® U = Uy, 1S the equation of a horizontal line that defines the bottom boundary of the rectangle

® U = Upq, 1S the equation of a horizontal line that defines the top boundary of the rectangle
We want a way of establishing a correspondence between points in the two coordinate systems. For example, a point
in the center of the world coordinate system will correspond to a point in the the center of the device coordinate
system. A point in the lower left corner of one system will correspond to a point in the lower left corner of the

other system. A point that is a third of the way from the left boundary to the right boundary of the rectangle that
we defined in the world system will correspond to a point that is a third of the the way across in the device system.

Let (x,y) be a point in the world system and (u,v) be the corresponding point in the device system.

Then. ..

%= Ui + (@ = Tmin) (Umaz — Umin)
(xmaac - xmin)

0= o 4 YT Ymin)
(yma:r - ymzn)

34 December 9: Data classes

A programmer might want a class only to hold data. Such a class will have instance variables, a constructor, and
getters (accessor methods), but no methods that execute algorithms. Such a class is a ”data class.”

Picture in your mind’s eye a rectangle whose edges are all parallel to one of the coordinate axes. We can describe
the rectangle with just four numbers:

e the x coordinate of the rectangle’s left boundary

50

_ =

R O © 00O Ui Wi+

e the x coordinate of the rectangle’s right boundary
e the y coordinate of the rectangle’s bottom boundary

e the y coordinate of the rectangle’s top boundary

e Can you define a data class that models this kind of rectangle?

e Can you define a second class whose instance variables are two rectangles? Call these two instance variables
world and device.

We will see how to use these classes in a program that draws Moiré; patterns. (Search on the Web with the word
"moire” to see some of the many patterns that are possible.)

Make the class that holds the two rectangles a data class now. Later, we will add a method that, given a point in
the first rectangle, finds a corresponding point in the second rectangle.

35 December 9: Rays of the sun or spokes of a wheel

Learn how to use the Point2D and Line2D classes of the java.awt.geom package.

Point2D and Line2D are *abstract classes.* This means that they specify some methods without providing definitions
of those methods. Their sub-classes (Point2D.Double and Line2D.Double) do fully define how the methods are to
do their jobs.

This means that you cannot write. . .

Point2D p = new Point2D(3.0, 4.0);

... but you can write. ..

Point2D p = new Point2D.Double(3.0, 4.0);

Can you write code that creates a list of line segments that together resemble the spokes of a wheel or the rays of
the sun?

To make the exercise a little simpler, assume that one endpoint of each line segment is (0.0,0.0) and that the other
endpoint is (cos @, sin ¢), where 0.0 < ¢ < 27. The angle ¢ will be different for each line segment.

36 December 10: Inheritance and polymorphism

Let’s suppose that we have defined a class named ‘Employee‘ and that within that class we have defined a method
named ‘getPay()*:

public class Employee {
// Instance variables not shown
// Constructors not shown

public BigDecimal getPay () {
} // getPay()

// Other methods mot shown
} // Employee

51

N O U W N

[\ T W N

[\)

We have also defined subclasses:

public class SalariedEmployee extends Employee {
// Instance wvariables, constructors, methods not shown
Y // SalariedEmployee

public class HourlyEmployee extends Employee {
// Instance wvariables, constructors, methods not shown

Y // HourlyEmployee

Because ‘SalariedEmployee‘ and ‘HourlyEmployee® inherit from ‘Employee‘, they both have a method named ‘get-
Pay()‘.

The two classes can override the definition of the method that they inherited from their parent class. Each will
override the definition in a different way, because the company computes the pay of hourly and salaried employees
in different ways. However, in each case the new version of the ‘getPay()‘ method must have the same number and
type of parameters and the same return type as the method in the parent class.

@Override
public BigDecimal getPay () {
// Some sequence of statements
// that will compute the pay (not shown).

Y // getPay()

We can make a list of employees and add employees to the list.

List <Employee> employees = new ArrayList <>();
employees.add(new SalariedEmployee (” Adele Goldberg”));
employees.add(new HourlyEmployee (” Peter Denning”));

Then I want to print the pay of each employee:

for (Employee e : employees) {
System.out.println(e.getPay());

y /) for

The run-time system can tell what kind of employee it is taking from the list at each step in this iteration. It will
then execute the appropriate version of ‘getPay()‘. This is polymorphism.

Polymorphism ("poly” = many, ”morphism” = forms) is a principal, defining feature of object-oriented program-
ming. The programmer does not have to write ‘if ¢ statements to distinguish between (or among) different kinds of
employees and explicitly tell the computer which version of the ‘getPay()* method to execute. Instead, the run-time
system (the software that runs programs on the computer) can determine which kind of object it has and call
the right version of the method—this happens automatically. This feature reduces the amount of code that the
programmer must write, the amount of work that the programmer must do, and the number of details to which the
programmer must attend.

36.1 Exercise

e How can you learn more about the ‘BigDecimal® class? Where will you go to learn more?

Why should ‘getPay* return to its caller an instance of ‘BigDecimal‘ rather than a ‘double‘?

Who is Adele Goldberg?

Who is Peter Denning?

52

37

December 13: 3 short videos

37.1 Respond to the following questions here on Piazza.

e What parts of the advice given here might help us in our current writing exercise?

38

— How to Answer Behavorial Interview Questions | Udacity Career Tip #16
Which of the points that Mayuko makes in this next video persuaded you?

— The Most Important Skill in Software Engineering
What is new or surprising to you in what these writers have to say about their work?

— Meet Technical Writers at Google

December 13: Writing with the English and Java languages

something is better than nothing

late is better than never

start early

work in small steps

have something that works / have something that you can present every day!
spelling and grammar count!

find another set of eyes to look at your work

read an English paper out loud (to yourself or, even better, to other people)
do not expect to fully understand at the outset what your client wants
whenever possible, keep up an on-going conversation with your clients

expect the specifications to change

expect to throw away much of what you write

write words that you want your readers to see + notes to yourself

write code that will execute + notes to yourself

choose software that will help you in this work, learn how to use that software
separate concerns: content and format (fonts, margins, indentation of paragraphs, placement of page numbers)
separate concerns: logic/arithmetic and appearance of output

periodically pause to refactor

— add no new ideas, factual assertions, logic, arithmetic
— move elements to produce a more logically ordered document

— divide large elements (sentences and paragraphs in an English document, classes and methods in a Java
program) into smaller elements

eliminate redundant elements

lower quantity / higher quality is a better combination than higher quantity / lower quality
fewer words and pages might be better!

less functionality in a computer program might be better!

53

https://youtu.be/eopQfYwcZwE
https://youtu.be/ytSz5wSCmd4
https://youtu.be/qnnkAWP55Ww

39 December 13: Programming exercise

1. Complete this program.

1 |package lastexercise;

2

3 |import java.util.ArrayList;

4 |import java.util.List;

5

6 | public class LastExercise {

7

8 public static boolean foundMatch(int value, List<Integer> list) {
9 // TO-DO: Complete the definition of this
10 // stub method.

11

12 // The completed method will return true its
13 // caller if list contains value, and will
14 // return false otherwise.

15

16 return false;

17 Y // foundMatch(int, List<Integer>)

18

19 public static int countMatches(int value, List<Integer> list) {
20 // TO-DO: Complete the definition of this
21 // stub method.

22

23 // The completed method will return to its
24 // caller the number of times that value

25 // appears in list.

26

27 return 0;

28 Y // countMatches(int, List<Integer>)

29

30 public static void main(String [] args) {
31 List<Integer> data = new ArrayList <>();

32

33 data.add(34);

34 data.add(13);

35 data.add(89);

36 data.add(55);

37 data.add(21);

38 data.add(13);

39

40 boolean found = foundMatch(55, data);

41 System.out.println(755 was found in the list: ” + found);
42

43 int count = countMatches(13, data);

44 System.out.printf(”Found %2d matches to 13 in the list\n”,
45 count);

46

47 Y // main(String [])

48

49 |} // LastExzercise

2. You previously saw classes that model lengths and weights.

A length (feet and inches) is a number with two parts.

54

0O Ui Wi+

DO DD DD = = = b e e e e
N — O O 00O Uik WwNhH— OO

A we

ight (pounds and ounces) is also a number with two parts.

In those previous exercises, we defined special rules (methods) for adding lengths in the first case and weights
in the second case.

In th

is exercise, you will again create a class that models a kind of number that has two parts.

Cooks measure fluids and powders with spoons.

Let’s

define “spoonful” to be a number with two parts: the number of tablespoons and the number of

teaspoons.

A tablespoon contains three teaspoons.

(2 tablespoons, 1 teaspoon) plus (1 tablespoon, 2 teaspoons) equals (4 tablespoons, 0 teaspoons)

Write a program that defines a class that models a spoonful, creates two instances of the Spoonful class,
computes their sum, and prints the sum.

The Spoonful class will have. . .

instance variables
a constructor
a method to add one Spoonful to another Spoonful and return the sum to its caller

a toString () method that returns a printable representation (a String) to its caller

40 December 14: Exercise

Create a version of this program on your own computer. Follow the hints found in the “TO-DO” comments to
make an image that appeals to you.

TSquare.java

package

import j
import j

tsquare ;

ava.awt.Container;
avax.swing . JFrame;

public class TSquare extends JFrame {
// TO-DO: Ezperiment with different widths,

// hei

privat
privat
privat

public
this
this

this.

ghts , and titles.

e static final int FRAMEWIDTH = 512;

e static final int FRAMEHEIGHT = 512;

e static final String FRAMETITLE = ” TSquare” ;

TSquare () {

_setSize (FRAMEWIDTH, FRAMEHEIGHT);

.setTitle (FRAME.TITLE);
setDefaultCloseOperation (JFrame.EXIT_ ON_CLOSE);

Container pane = this.getContentPane ();

pane

this

.add(new TSquarePanel());

.setVisible (true);

} // TSquare()

55

23
24
25
26
27
28

OO UL W N+

R R R R R O 0 W W W W W W LW NDNDNDNDNDNDDNDNDNDN R e e e e
QU WD O OO UkRE W, OO UlREWNFE OO0 Utk W~ O o

public static void main(String [] args) {

TSquare tsquare = new TSquare ();

Y // main(String [])

Y // TSquare

TSquarePanel.java

package tsquare;

BasicStroke;
Color;
Graphics;
Graphics2D;
Shape;

import awt .
import
import
import
import
import
import
import

java.
java.awt.
java.awt.
java.awt.
java.awt.
java. geom . AffineTransform ;
java.awt.geom.Rectangle2D ;
javax.swing.JPanel;

awt .

public class TSquarePanel extends JPanel {
// TO-DO: FEzperiment with different colors.
// TO-DO: Can you produce a more appealing image
// by using partly transparent colors?
// Use a fourth parameter in Color’s constructor
// to specify the degree of transparency.

private static final
private static final
// TO-DO: FExperiment
private static final
// TO-DO: Ezperiment

Color BG.COLOR = new Color(112, 248, 196);
Color FG.COLOR = new Color(24, 64, 224);
with different thickness of the lines.
float THICKNESS = 8.0F;

with different wvalues of THRESHOLD.

// The value of THRESHOLD determines how far recursion goes.
private static final double THRESHOLD = 0.8;

public TSquarePanel () {
this.setBackground (BG.COLOR);
Y // TSquarePanel ()

@Override

public void paintComponent(Graphics g) {
super . paintComponent(g);
Graphics2D ¢2D = (Graphics2D) g;

int w = this.getWidth ();

int h = this.getHeight ();

// We will define all geometry in a world
// coordinate systems whose lower left

// corner is at (x = —1.0, y = —1.0) and

// whose upper right corner is at

J/ (x = +1.0, y = +1.0).

// Then will use the AffineTransform class
// and its methods to translate and scale

56

46 // the geometry so that it fits the panel

47 // in which we draw the picture.

48

49 AffineTransform scale = new AffineTransform ();

50 scale.setToScale(w/2, h/2);

51

52 AffineTransform translate = new AffineTransform ();
53 translate.setToTranslation(1, 1);

54

55 // Translation is the first operation.

56 // Scaling is the second operation.

57

58 AffineTransform transform = new AffineTransform ();
59 transform . concatenate(scale);

60 transform.concatenate(translate);

61

62 g2D.setColor (FG.COLOR);

63 g2D.setStroke (new BasicStroke(THICKNESS));

64

65 // TO-DO: You may experiment with different

66 // values of size. Give it a positive value < 2.0.
67 double size = 1.8;

68 double xMin = —size /2;

69 double yMin = —size /2;

70 double xMax = +size /2;

71 double yMax = +size /2;

72

73 Rectangle2D square = new Rectangle2D .Double(xMin, yMin, size, size);
74 drawSquares(square, g2D, transform);

75

76 Shape shape = transform.createTransformedShape(square);
7 g2D.draw(shape);

78 Y // paintComponent(Graphics)

79

80 public void drawSquares(Rectangle2D square

81 Graphics2D g2D, AffineTransform transform) {
82

83 // TO-DO: Adding an integer parameter to this

84 // method will make it possible to give different
85 // colors to different size squares. If interested
86 // in trying this, ask for more instructions.

87

88 // Continue dividing square into smaller squares
89 // only as long as the square’s side exceeds a threshold.
90

91 if (square.getBounds2D ().getWidth () > THRESHOLD) {
92 // Divide square into 4 smaller squares (quadrants).
93

94 // lower left corner of big square

95 double xMin = square.getX ();

96 double yMin = square.getY ();

97

98 // upper right corner of big square

99 double xMax = xMin + square.getWidth ();

100 double yMax = yMin + square.getHeight ();

101

57

102 // center of big square

103 double xMiddle = (xMin + xMax)/2;

104 double yMiddle = (yMin + yMax)/2;

105

106 // center of mortheast quadrant

107 double neX = (xMiddle + xMax)/2;

108 double neY = (yMiddle + yMax)/2;

109

110 // center of northwest quadrant

111 double nwX = (xMin + xMiddle)/2;

112 double nwY = (yMiddle + yMax)/2;

113

114 // center of southwest quadrant

115 double swX = (xMin + xMiddle)/2;

116 double swY = (yMin + yMiddle)/2;

117

118 // center of southeast quadrant

119 double seX = (xMiddle + xMax) /2;

120 double seY = (yMin + yMiddle)/2;

121

122 // Call drawSquares() recursively on each of
123 // square’s 4 quadrants.

124

125 Rectangle2D northeast = new Rectangle2D .Double (
126 xMiddle, yMiddle, xMax — xMiddle, yMax — yMiddle);
127 drawSquares(northeast , g2D, transform);

128

129 Rectangle2D northwest = new Rectangle2D .Double(
130 xMin, yMiddle, xMiddle — xMin, yMax — yMiddle);
131 drawSquares (northwest, g2D, transform);

132

133 Rectangle2D southwest = new Rectangle2D .Double(
134 xMin, yMin, xMiddle — xMin, yMiddle — yMin);
135 drawSquares(southwest, g2D, transform);

136

137 Rectangle2D southeast = new Rectangle2D .Double (
138 xMiddle, yMin, xMax — xMiddle, yMiddle — yMin);
139 drawSquares(southeast , g2D, transform);

140

141 // Create a fifth smaller square whose corners
142 // are at the centers of the quadrants.

143

144 // TO-DO: Try creating an Fllipse2D here instead
145 // of a Rectangle2D. The parameters for the

146 // constructor will be the same. Or you might
147 // try a RoundRectangle2D .

148 Rectangle2D center = new Rectangle2D . Double (

149 swX, swY, neX — swX, neY — swY);

150 Shape shape = transform.createTransformedShape(center);
151

152 // TO-DO: Try replacting this next call to draw()
153 // with a call to fill ().

154 g2D. fill (shape);

155 |}/ if

156

157 Y // drawSquares(Rectangle2D, AffineTransform)

58

158
159

Y // TSquarePanel

41

1.

© ® N ooe W

10.

December 15: Review

How many multiplications do we need to computer 2'6 = 65,5367

216-9.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2

216:28_28
28 =21.924
24 = 92.92
22=92.2

How might you use what you learned from the previous question to write a method that efficiently computes
a™ (where n is a non-negative integer)?

In what sense is Java a hybrid language?

If you could only have three of Java’s primitive types, which would you choose?

What is the convention for naming Java classes?

In what ways does the header of a constructor differ from the header of a method?

What is the purpose of a toString() method?

How does inheritance reduce the amount of work a programmer might otherwise have to do?
How does polymorphism reduce the amount of work a programmer might otherwise have to do?

A Java programming convention calls for making the instance variables in a class private. How can a
programmer make it possible for statements in other classes to retrieve the values of these instance variables
or changes their values?

Why not just make instance variables public?

59

	November 15 (a.m.)
	The Java Programming Language
	Origins
	Distinguishing features
	The future of Java
	Udacity course
	Oracle: The Java Tutorials
	Object-Oriented programming
	Downloads

	November 16: Exercise
	November 16
	November 17: Assignment for Week 0
	November 17 (a.m.)
	Structure of a Java programming

	November 17 (p.m.)
	November 18 (a.m.)
	Definition of ``variable''
	Primitive and reference types

	November 18 (p.m.)
	November 18: Guidelines for writing
	November 18: Understanding and comparing sorting algorithms
	Measuring computational complexity
	``Big-Oh''
	Complexity of sorting algorithms

	November 19 (a.m.)
	Sequential Search
	Selection Sort
	Insertion Sort
	There are searches inside both sorts!
	Merge Sort

	November 29: A class as a blueprint
	November 29: Parts of a class
	November 29: Learning how to use Git and GitHub
	November 30: A class that models vectors
	December 1: The start of the definition of the Vector class
	December 2
	December 2: How to push local files to a GitHub repository
	December 2: IBM Watson: Final Jeopardy! and the Future of Watson
	December 2: Turing Award winners
	December 3: Modeling a fraction
	December 3: Cats Cradle program
	CatsCradle.java
	CatsCradlePanel.java
	Vector2D.java

	December 6: Work flow
	December 6: How to describe a curve
	Line
	Explicit formulation
	Implicate formulation
	Parametric formulation

	Other parametric curves
	Circle
	Ellipse
	Lissajous figure

	Where to look for other formulae

	December 6: Where to learn more
	GitHub tutorials

	December 6: How to get started on paper
	December 6: Fractal program
	FractalSet.java
	FractalSetPanel.java
	Complex.java

	December 7:
	December 7: 2 meanings of ``class'' in Java
	December 7: Scope and lifetime of variables
	December 7: Instance variables, parameters, and local variables
	December 8: Review of version control
	Basics
	Learning how to use version control
	Version control commands

	December 8: Mapping points
	Rectangles in two coordinate systems

	December 9: Data classes
	December 9: Rays of the sun or spokes of a wheel
	December 10: Inheritance and polymorphism
	Exercise

	December 13: 3 short videos
	Respond to the following questions here on Piazza.

	December 13: Writing with the English and Java languages
	December 13: Programming exercise
	December 14: Exercise
	December 15: Review

