Exercise 6 for Students of Computer Science

Leon Tabak
l.tabak@ieee.org

24 July 2021

This work is licensed under CC BY 4.0. To view a copy of this license, visit
http://creativecommons.org/licenses /by /4.0/.

AR ABBN M N\ LB AN
ES [\ [\ 6N AR N
\ \\ /I / \ / \ / \ \\ // / /’ / \ 4

N QY YV N gy N

We are going to study and then modify a program that Sylvain Saurel wrote.

See here:

o ssaurel/GameOfFifteen

e SSaurel’s Channel

Find the article about the 15 puzzle in the mathworld.com website We will
include a link to this article in the documentation of your program.

Find a table of x11 colors or HTML colors on the Web. These tables associate
names of colors with integers. Choose colors that appeal to you. Declare integer
constants in the program to represent these colors. Replace the colors in the
program (for example, the color assigned to FOREGROUND_COLOR) with
these constants.

You can place Javadoc comments immediately before the definition of a class,
instance variable, or class. Begin adding Javadoc comments to the program.
Use the author@, version@, param@, and return@ tags. Include a comment
that identifies the author of the original version of this program and explains
that you are modifying this code.

http://creativecommons.org/licenses/by/4.0/
https://gist.github.com/ssaurel/bcc17f2f6fe1fb94a8f0da2791cd216b
https://www.youtube.com/user/sylsau
mathworld.com

Look at the constructor for the GameOfFifteen class. It contains calls to meth-
ods that a programmer could choose to preface with this. For example, you
could write. . .

this.setPreferredSize (new Dimension(dimension, dimension + margin)

...instead of...

setPreferredSize (new Dimension(dimension, dimension + margin)

Search on the Web to learn what style other programmers favor: should we
include the word this or not?

Look at the main() method of the program. Look for answers to these questions
in the code, in the Java API documentation on the Web, and on Stack Overflow.

o What is a thread?

e What is the invokeLater() method?

e What is the argument to invokeLater()?
e What is JFrame. EXIT_ON_CLOSE?

e What happens if you replace “Game of Fifteen” with another string in the
call to setTitle ()?

e What is a layout manager? What is the default layout manager for the
JFrame class?

e What is BorderLayout. CENTER?

¢ What happens if you change the values of the parameters of the GameOfFifteen
constructor? (The current values are 4, 550, and 30.)

e Are the calls to pack() and setVisible () necessary?

Now look at the paintComponent() method.

e What is the significance/purpose of Override@? What happens if you
leave out that line?

e What does that statement super.paintComponent(g) accomplish?

e What is the relationship of the Graphics2D class to the Graphics class?

Communicate with me each day. Do not worry if you cannot answer all of my
questions or carry out all of the tasks that I suggest. Just keep up a dialogue
with me.

I would like you to gain a deeper understanding of the GameOfFifteen program
over the next couple of days.

Sylvain Saurel published the code for the Game of Fifteen on GitHub in a Gist.
I did not know about Gists. I just a read a little about this feature of GitHub.

I copied Saurel’s code into a NetBeans project that I created on my own com-
puter. I created a local Git repository on my computer. Then I created a new
remote repository on my own GitHub account. I push the contents of my local
repository to the remote repository.

This repository is accessible to you and the rest of the world. It is here at
https://github.com/leontabak /gameof15. T added a package statement at the
top of the file and a JavaDoc comment that contains a link to Saurel’s Gist.

The program shuffles integers. See here to learn more about the algorithm.
Your best friends in this exercise will be the Java API docs and Stack Overflow.

Look at the documentation for the Collections class in the Java API docs.
That class includes a method called shuffle (). How could you use that in the
GameOfFifteen program?

Look also at the Point class. It models a pair of integers x and y. The GameOf-
Fifteen program refers to the coordinates of tiles with row and column numbers.
Might the Point class be a better way of keeping track of where tiles are?

NetBeans tells me (by showing little yellow light bulbs on the left) that Saurel’s
code could be improved by removing some calls to methods from the construc-
tor for the GameOfFifteen class. These methods include setPreferredSize (),
setBackground(), setForeground(), setFont(), and addMouseListener(). These
are methods whose definitions could be overridden in a sub-class. Including
such calls in the constructor is dangerous. It is better to create a new private
method (maybe call it configure()) and put the calls to those methods there.

A single file contains the whole program. Look for places where you might want
to split the big files into several smaller files. That would mean putting some
of the code into other classes. For example, you might improve the program by
putting the MouseListener code in a separate file.

Look also for names of variables or methods that you might want to replace
with other names that more clearly suggest the purpose of a variable or method.
Maybe you make the code easier to understand just by abbreviating less: “num-
berOfTiles” instead of “nbTiles” or “blankPosition” instead of “blankPos.”

https://docs.github.com/en/github/writing-on-github/editing-and-sharing-content-with-gists/creating-gists
https://github.com/leontabak/gameof15
https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle
https://docs.oracle.com/javase/7/docs/api/
https://stackoverflow.com/tour

ST W N~

N O U W N

Look for Boolean expressions in if statements and loops. Maybe we would be
wise to put some of that code into new functions? You might, for example, want
to take a look at the code that determines the direction in which the program
moves tiles.

Ask lots of questions!

2

Here are some more ideas for making small changes to the program and for
getting a better handle on what’s happening through experimentation.

Try replacing this code. The code is in the drawGrid() method.

// for other tiles
.setColor (getForeground ());

.setColor (Color .BLACK) ;
.drawRoundRect (x, y, tileSize
.setColor (Color .WHITE) ;

02 08 00 0% 0%

... with this code. ..

// for other tiles

int radius = 25;

g.setColor (getForeground ());
.fillRoundRect (x, y, tileSize
.setColor (Color .BLACK) ;
.drawRoundRect (x, y, tileSize
.setColor (Color .WHITE) ;

02 0’ 02 09

Run the program. Then change the value of radius to something other than 25.
Run the program again. What happens?

What happens if you change Color.BLACK to some other color? What happens
if you change Color. WHITE to some other color?

What happens if you add this line of code before the call to drawRoundRect()?
g.setStroke (new BasicStroke (6));

What happens if you change that 6 to something else? If not, just search on
the Web for \u2713.

3

I left out some text from my last note. I meant to include this:

.fillRoundRect (x, y, tileSize , tileSize , 25, 25);

, tileSize , 25, 25);

, tileSize , radius, radius);

, tileSize , radius, radius);

OO UL W N+

Make the changes in newGame() that you see here. I have put the call to
shuffle () in a comment and assigned true instead of false to gameOver.

private void newGame() {
do {
reset (); // reset in intial state

//shuffle (); // shuffle
} while (!isSolvable()); // make it wuntil grid be solvable

gameOver = true; //false;

}

Run the program. Now you see what a player will see after solving the puzzle.
In the definition of drawGrid() you will see 72713.”

Can you see what that code means? If not, search on the Web with \u2713.

4

The program uses 1-D data structure to model a 2-D game.

The 1-D data structure is an array of integers.

The 2-D data structure is a 4 x 4 grid.

The program translates between the 1-D model and the 2-D model.

Let’s see how that works. We draw the 4 x 4 grid and label each of the 16 tiles
with a row number and a column number. We start counting rows and columns
at zero. The first row is row #0. The first column is column #0. The last of
the four rows is row #3. The last of the four columns is column #3.

(00,00) | (00,01) | (00,02) [(00,03)
(01,00) | (01,01) | (01,02) | (01,03)
(02,00) | (02,01) | (02,02) | (02,03)
(03,00) | (03,01) | (03,02) | (03, 03)

As you see, the row number of the tile in the upper left corner is 0. Its column
number is also 3.

The row number of the tile in the lower right corner is 3. Its column number is
also 3.

Now let’s draw the grid but label each tile with its index number. The index is
a position in the 1-D array.

00| 01]02]|03

04] 05| 06 | 07

08 1 09|10 | 11

12 1 13 | 14 | 15

Note that the index number is not the number that appears on the screen! It
is the position within the 1-D array where the program finds the number that
it draws on the screen.

Note also that for each tile: row - 4 + column = index.

Also, row = index /4 and column = index%4. (This is integer division: 7/4 =

1.)

5

A process is a program in execution. A process is the basic unit of work on
a computer. Your program runs many processes at once. A thread is a “light
weight process.” Light weight means that the computer need not keep track of
as much information about a thread as it must for a process. This is because
threads do not have their own memory space, but share space with other threads.
You can learn more by searching on Stack Overflow. Java allows us to create
several threads in a single process and to make these threads communicate with
one another. For example, a programmer might want separate processes to draw
the elements of a graphical user interface and to query a database.

Graphics2D extends Graphics. This means that Graphics2D is a subclass of
Graphics. A Graphics2D object is a kind of Graphics object—it can do every-
thing that a Graphics object can, and then some more.

super.paintComponent() tells the computer to execute the parent’s version of
paintComponent() before executing our own version.

The default layout manager for other classes is indeed FlowLayout, but for
JFrame the default layout manager is BorderLayout. BorderLayout puts one
main big thing in the middle of a window and optionally puts something else
above the thing the middle, something below, something to the right, and some-
thing to the left. In this case, we just put a JPanel in the middle. We do not
have anything above, below, left, or right.

Override@ tells the compiler that we are redefining a method that we inherited
from the parent class. The program will still work without this annotation, but
its presence will enable the compiler to catch some kinds of errors that we might
miss otherwise.

I did not try it on this program, but I think that if you remove the call to
setVisible() you will no longer see the game.

Now you know what the parameters for the contructor mean. You can have a
3 x 3 grid or a 4 x 4 grid or a 55 grid. You can make the grid fill the window
or leave large margins around the grid. You can make a big window or a small
window.

6

To finish this project, continue studying the program, experimenting with the
program, documenting the program, and changing the program by following
some of the suggestions that I have shared with you. We will find a time to meet
in a video conference. We will both have the program open on our computers.
Together, we will work on the program. I will lead you. I will teach you more
about how the program works. You will share with me your understanding. I
think that we can finish the capstone in this meeting.

Study how a player moves the blank tile on the board. Where must the player
click to make the blank tile move? How far can one click move the tile?

If you do not already know how to write Javadoc comments, please learn. If
you cannot find a good guide, ask me.

Take a look at this article about even permutations. Mathworld also has a
longer article about permutations.

Here are some other little things to investigate and try:

e You could try using a different font or font weight or font style for the
numbers on the tiles.

e You could see if the valueOf() method of the String class and the toString ()
method of the Integer class are equivalent. The program uses the valueOf()
method. Could we use the toString () method? Is there any reason to pre-
fer one over the other? (I do not know.)

e We are using the decimal integers 1 to 15 to label the tiles. We could
instead use the hexadecimal digits 1 to F. I think that the Integer class
provides a method that would make it easy to do that.

e Maybe we can come up with a way of keeping track of how many times or
how far we move the blank tile?

Once again, please do not be shy about asking questions! I am not testing you
to learn how much you already know. In this last class, I want to give you just
a little more practice learning with and from a partner (that’s me!).

